HEATING COOLING CURVE

Z is a covalent substance. In an experiment, a sample of pure solid **Z** was continually heated for 11 minutes.

The graph shows how the temperature of the sample of pure **Z** changed during the first 9 minutes.

(a)	What is	the	melting	point	ot	pure	Ζ?
-----	---------	-----	---------	-------	----	------	----

.....°C [1]

(b) The sample of pure **Z** began to boil at 9 minutes. It was boiled for 2 minutes.

Use this information to sketch on the grid how the temperature of the sample of pure **Z** changed between 9 minutes and 11 minutes. [1]

(c) The sample of pure **Z** was continually heated between 2 minutes and 5 minutes.

sample of pure **Z** between 2 minutes and 5 minutes.

Explain, in terms of attractive forces, why there was no increase in the temperature of the

1

(d)	Describe how the motion of particles of pure Z changed from 0 minutes to 2 minutes.
	[2]
(e)	The experiment was repeated using a solid sample of impure Z .
	Suggest the differences, if any, in the melting point and boiling point of the sample of impure Z compared to the sample of pure Z .
	melting point

(f) A sample of pure **Z** was allowed to cool from 120 °C to 20 °C. The total time taken was 8 minutes.

Starting from point \mathbf{x} , sketch on the grid how the temperature of the sample of pure \mathbf{Z} changed between 0 minutes and 8 minutes.

[2]

[2]

[Total: 10]

MARKING SCHEME:

(a)	80(°C) (1)	1
(b)	horizontal line from end of graph at minute 9 to minute 11 (1)	1
(c)	energy is used to break bonds / overcome attraction (1)	2
	between molecules (1)	
(d)	vibrations (1)	2
	increase (1)	
(e)	melting point decreases (1)	2
	boiling point increases (1)	
(f)	decrease from 120 °C to 80 °C and horizontal line at 80 °C (1)	2
	decrease from horizontal line to finish at 20 °C at 8 mins (1)	

The graph shows how the temperature of a substance changes as it is cooled over a period of 30 minutes. The substance is a gas at the start.

Each letter on the graph may be used once, more than once or not at all.

aj	Willcilletter, 3,	\mathbf{I} , \mathbf{V} , \mathbf{VV} , $\mathbf{\Lambda}$,	I OI Z, SHOWS WHEH	

	(i)	the particles in the substance have the most kinetic energy,	
	(ii)	the particles in the substance are furthest apart,	
	(iii)	the substance exists as both a gas and a liquid?	[1]
			[1]
(b)	Use	e the graph to estimate the freezing point of the substance.	
		°C	[1]
(c)	Nar	me the change of state directly from a solid to a gas.	
			[1]
(d)		en smoke is viewed through a microscope, the smoke particles in the air appear to jurund.	np
	(i)	What term describes this movement of the smoke particles?	
	(ii)	Explain why the smoke particles move in this way.	

[Total: 8]

MARKING SCHEME:

(a)(i)	s	1
(a)(ii)	s	1
(a)(iii)	v	1
(b)	any value in the range 130–145 °C	1
(c)	sublimation	1
(d)(i)	Brownian motion	1
(d)(ii)	nitrogen / oxygen / carbon dioxide / air molecules hit / bombard the smoke particles	1
	(the bombarding particles) move randomly	1