PRESSURE-PAPER-4-SET-4-QP-MS

A vertical cylinder has a smooth well-fitting piston in it. Weights can be added to or removed from a tray on the top of the piston.

(a) Weights are added to the tray, as shown in Fig. 6.1.

Fig. 6.1

(i)	State what happens to the pressure of the air in the cylinder as a result of adding these weights.
	[1]
(ii)	The initial pressure of the trapped air is $1.05\times10^5\text{Pa}$. When the weights are added, the volume of the air decreases from 860cm^3 to 645cm^3 .
	The temperature of the air does not change.
	Calculate the final pressure of the trapped air.
(iii)	pressure =

weight added =[4]

Calculate the weight that is added to the piston.

(b) The weights are kept as shown in Fig. 6.1. The temperature of the air in the cyl increased.				
	(i)	State what happens to the volume of the air in the cylinder as a result of this temperature rise.		
		[1]		
	(ii)	State how, if at all, the pressure of the air changes as the temperature changes.		
		[1]		
	(iii)	State what must be done to prevent the volume change in (b)(i).		
		[1]		
	(iv)	The volume change in $(b)(i)$ is prevented. State what happens to the pressure of the air in the cylinder.		
		[1]		
		[Total: 12]		

(a)	(i) in	creases	ļ	B1
	1	V = const in any form .05 (× 10 ⁵) × 860 (× 10 ⁻⁶) = p × 645 (× 10 ⁻⁶) .4 × 10 ⁵ Pa	(C1 C1 A1
(iii)	F = p EITH OR	A in any form accept weight for F increase in pressure = 0.35×10^5 (Pa) $0.35 \times 10^5 \times 5.0 \times 10^{-3}$ 175 N (minimum 2 s.f.) c.a.o. $1.05 \times 10^5 \times 5.0 \times 10^{-3}$ or 525 N or $1.4 \times 10^5 \times 5.0 \times 10^{-3}$ or 700 N $700 - 525 \text{ N}$ e.c.f. from (a) (ii) 175 N (minimum 2 s.f.) c.a.o.	C1 C1 C1 A1 (C1) (C1) (A1)	
(b) (i)	incre	ases	B1	
(ii)	no cł	no change		
(iii)	extra	extra weight (on tray/piston)		
(iv)	iv) increases		B1	
				[12]

Fig. 3.1

The hydraulic fluid transmits the pressure, caused by piston A, equally to each of the four pistons holding up the car supports. The pressure throughout the fluid is the same.

A force of 1000 N on piston A is just enough to raise the car.

- (a) Using values from Fig. 3.1, find
 - (i) the pressure caused by piston A on the fluid,

(ii) the total upward force caused by the fluid.

(b)	The weight of each of the two car supports is 1000 N.
	Calculate the mass of the car.
	mana [10]
	mass =[2]

(a) (i) (P =) F/A in any form OR 1000/0.01 100 000 Pa accept N/m ²	C1 A1
(ii) multiplication of either force or area by 4 0.08 × his (i) OR 0.02 × his (i) 8000 N e.c.f. from (i) (2000 N gets C0, C1, A1)	C1 C1 A1
(b) his (ii) – 2000 correctly evaluated 600 kg e.c.f.	C1 A1
	[Total: 7

Complete Fig. 4.1 to show a simple mercury barometer. Insert the correct labels in the boxes. Label with the letter *h* the measurement required to calculate the pressure of the atmosphere.

Fig. 4.1

(b) The value of h taken using this barometer is 0.73 m. The density of mercury is 13600 kg/m³. Calculate the value of the atmospheric pressure suggested by this measurement. Use $g = 10 \,\text{m/s}^2$.

atmospheric pressure =[2]

(c) Standard atmospheric pressure is 0.76 m of mercury. Suggest a reason why the value of h in (b) is lower than this.

[1]

[Total: 6]

[3]

7

4	(a)	surfaces shown at realistic levels in dish and tube AND vertical height <i>h</i> between levels clearly shown top label: vacuum / mercury vapour bottom label: mercury	B1 B1 B1
	(b)	(<i>P</i> =) <i>hdg</i> OR 0.73 × 13600 × 10 99280 Pa at least 2 s.f.	C1 B1
	(c)	one from: abnormal weather / atmospheric conditions o.w.t.t.e. air in space above mercury in tube barometer is in a high altitude location o.w.t.t.e. space above mercury is not a vacuum ignore atmospheric pressure varies ignore temperature	B1 [6]

A soldier wears boots, each having an area of 0.016 m² in contact with the ground.

Λ	L

The soldier weighs 720 N.

(a)	(i)	Write down the equation that is used to find the pressure exerted by the soldier on the ground.
	(ii)	Calculate the pressure exerted by the soldier when he is standing to attention, with both boots on the ground.
		pressure =[2]
(b)	The	e soldier is crossing a sandy desert.
		plain, stating the relevant Physics, why this soldier is at an advantage over another soldier by has the same weight but smaller feet.

(c) The soldier's unit is sent to a cold country, and on one occasion he has to cross a frozen lake.

Suggest one way that the soldier can reduce the risk of the ice breaking under his weight.

.....[2]

[1]

[Total: 5]

(a)	(i) $(P =) F/A$	words or symbols	B1	
	(ii) 22 500 Pa		B1	
(b)	less pressure less sinking		B1 B1	
(c)	any suggestion e.g. snow shoe	which involves increasing the area in contact with the ice	B1	[5]

(a)) Explain		
	(i)	how gas molecules exert a force on a solid surface,	
		[1]	
	(ii)	the increase in pressure of a gas when its volume is decreased at constant temperature.	
		temperature.	
(h)	Λ ω	ylinder of volume 5.0×10^3 cm ³ contains air at a pressure of 8.0×10^5 Pa.	
(5)			
		ak develops so that air gradually escapes from the cylinder until the air in the cylinder tatmospheric pressure. The pressure of the atmosphere is 1.0×10^5 Pa.	
		culate the volume of the escaped air, now at atmospheric pressure. Assume that the perature stays constant.	
		(ii) (iii) (b) A cy A le is a Cale	

[Total: 8]

(a)	(i)	(Force exerted when) molecules hit wall / surface / solid (and rebound) Allow (force) due to momentum change in collision	B1	
	(ii)	Molecules/atoms/particles collide with / push against walls more (often) (so) bigger force / push	B1 B1 B1	
		NOT collide faster	ום	
(b)	8.0	$V_1 = P_2V_2$ OR PV = constant $1 \times 10^5 \times 5000 = 1 \times 10^5 \times V_2$ = 40 000 cm ³	C1 C1 C1	
	_	lume escaped = 40 000 - 5000 = 35 000 cm ³	A1	[8]

	(i)	Explain how the air molecules exert a pressure on the inside surface of the cylinder
()	(-)	
		[3]
	(ii)	The diver gradually uses up the air in the cylinder. Explain why the pressure falls.
		[1]
(b)		e density of the water in the lake is $1000\mathrm{kg/m^3}$ and the atmospheric pressure at the face is $1.0\times10^5\mathrm{Pa}$.
	Cal	culate the total pressure 25 m beneath the surface of the lake.
		total pressure =[3]

AKK	ING	SCHEME:		
(a)	(i)	atoms/molecules/particles move or collide (ignore with each other) atoms/molecules/particles collide <u>with (inside) surface/wall</u> force (exerted) on wall etc. or force/unit area or force spread-out	B1 M1 A1	
	(ii)	fewer atoms/molecules/particles and fewer collisions (with wall)	B1	
(b)	hρ	=) hpg or 25 × 1.0 × 10 ³ × 10 g + p _{atm} or 25 × 1.0 × 10 ³ × 10 + 10 ⁵ or 2.5 × 10 ⁵ s × 10 ⁵ Pa *Unit penalty applies	C1 C1 A1	[7]

^{*}Apply unit penalty once only

Complete the following statements by writing appropriate words in the spaces.

(b)

The pressure of a gas in a sealed container is caused by the collisions of
with the container wall.
An increase in the temperature of the gas increases the pressure because the
of the increases.
The force on the wall due to the gas is the pressure multiplied by the
of the wall. [2]
A mountaineer takes a plastic bottle containing some water to the top of a mountain. He removes the cap from the bottle, drinks all the water and then replaces the cap, as shown in Fig. 6.1.
On returning to the base of the mountain, he finds that the bottle has collapsed to a much smaller volume, as shown in Fig. 6.2.
Fig. 6.1 Fig. 6.2 (i) Explain why the bottle collapsed.

(ii)	At the top of the mountain the atmospheric pressure was $4.8 \times 10^4 \mathrm{Pa}$ and the							
	volume of the bottle was 250 cm ³ .							

Calculate the volume of the bottle at the base of the mountain where the pressure of the air inside the bottle is $9.2\times10^4\,Pa$. Assume no change of temperature.

volume =	 [3
volume –	 Į٧

[Total: 7]

(a)	molecules OR atoms OR particles speed OR velocity OR kinetic energy molecules OR atoms OR particles (Surface) area any four correct gains 2 marks, two or three correct gains 1 mark		
(b)	(i)	(when cap is screwed on) at top of mountain: pressure of air in bottle = the low pressure of the air outside OR is less than pressure at bottom of mountain OR is low	B1
		(at bottom of mountain) bottle collapses because pressure outside (bottle) is greater than pressure inside	B1
	(ii)	Boyle's law applies OR PV = constant OR $P_1V_1 = P_2V_2$ 9.2 × 10 ⁴ × V = 4.8 × 10 ⁴ × 250 130 cm ³	C1 C1 A1
			[Total: 7]