PRESSURE-PAPER-4-SET-4-QP-MS A vertical cylinder has a smooth well-fitting piston in it. Weights can be added to or removed from a tray on the top of the piston. (a) Weights are added to the tray, as shown in Fig. 6.1. Fig. 6.1 | (i) | State what happens to the pressure of the air in the cylinder as a result of adding these weights. | |-------|--| | | [1] | | (ii) | The initial pressure of the trapped air is $1.05\times10^5\text{Pa}$. When the weights are added, the volume of the air decreases from 860cm^3 to 645cm^3 . | | | The temperature of the air does not change. | | | Calculate the final pressure of the trapped air. | | (iii) | pressure = | | | | weight added =[4] Calculate the weight that is added to the piston. | (b) The weights are kept as shown in Fig. 6.1. The temperature of the air in the cyl
increased. | | | | | |--|-------|--|--|--| | | (i) | State what happens to the volume of the air in the cylinder as a result of this temperature rise. | | | | | | [1] | | | | | (ii) | State how, if at all, the pressure of the air changes as the temperature changes. | | | | | | [1] | | | | | (iii) | State what must be done to prevent the volume change in (b)(i). | | | | | | [1] | | | | | (iv) | The volume change in $(b)(i)$ is prevented. State what happens to the pressure of the air in the cylinder. | | | | | | [1] | | | | | | [Total: 12] | | | | (a) | (i) in | creases | ļ | B1 | |---------|---------------------|---|--|----------------| | | 1 | V = const in any form
.05 (× 10 ⁵) × 860 (× 10 ⁻⁶) = p × 645 (× 10 ⁻⁶)
.4 × 10 ⁵ Pa | (| C1
C1
A1 | | (iii) | F = p
EITH
OR | A in any form accept weight for F increase in pressure = 0.35×10^5 (Pa) $0.35 \times 10^5 \times 5.0 \times 10^{-3}$ 175 N (minimum 2 s.f.) c.a.o. $1.05 \times 10^5 \times 5.0 \times 10^{-3}$ or 525 N or $1.4 \times 10^5 \times 5.0 \times 10^{-3}$ or 700 N $700 - 525 \text{ N}$ e.c.f. from (a) (ii) 175 N (minimum 2 s.f.) c.a.o. | C1
C1
C1
A1
(C1)
(C1)
(A1) | | | (b) (i) | incre | ases | B1 | | | (ii) | no cł | no change | | | | (iii) | extra | extra weight (on tray/piston) | | | | (iv) | iv) increases | | B1 | | | | | | | [12] | Fig. 3.1 The hydraulic fluid transmits the pressure, caused by piston A, equally to each of the four pistons holding up the car supports. The pressure throughout the fluid is the same. A force of 1000 N on piston A is just enough to raise the car. - (a) Using values from Fig. 3.1, find - (i) the pressure caused by piston A on the fluid, (ii) the total upward force caused by the fluid. | (b) | The weight of each of the two car supports is 1000 N. | |-----|---| | | Calculate the mass of the car. | | | | | | mana [10] | | | mass =[2] | | | | | | | | | | | | | | (a) (i) (P =) F/A in any form OR 1000/0.01
100 000 Pa accept N/m ² | C1
A1 | |---|----------------| | (ii) multiplication of either force or area by 4 0.08 × his (i) OR 0.02 × his (i) 8000 N e.c.f. from (i) (2000 N gets C0, C1, A1) | C1
C1
A1 | | (b) his (ii) – 2000 correctly evaluated 600 kg e.c.f. | C1
A1 | | | [Total: 7 | Complete Fig. 4.1 to show a simple mercury barometer. Insert the correct labels in the boxes. Label with the letter *h* the measurement required to calculate the pressure of the atmosphere. Fig. 4.1 (b) The value of h taken using this barometer is 0.73 m. The density of mercury is 13600 kg/m³. Calculate the value of the atmospheric pressure suggested by this measurement. Use $g = 10 \,\text{m/s}^2$. atmospheric pressure =[2] (c) Standard atmospheric pressure is 0.76 m of mercury. Suggest a reason why the value of h in (b) is lower than this. [1] [Total: 6] [3] 7 | 4 | (a) | surfaces shown at realistic levels in dish and tube AND vertical height <i>h</i> between levels clearly shown top label: vacuum / mercury vapour bottom label: mercury | B1
B1
B1 | |---|-----|---|----------------| | | (b) | (<i>P</i> =) <i>hdg</i> OR 0.73 × 13600 × 10 99280 Pa at least 2 s.f. | C1
B1 | | | (c) | one from: abnormal weather / atmospheric conditions o.w.t.t.e. air in space above mercury in tube barometer is in a high altitude location o.w.t.t.e. space above mercury is not a vacuum ignore atmospheric pressure varies ignore temperature | B1 [6] | A soldier wears boots, each having an area of 0.016 m² in contact with the ground. | Λ | L | |---|---| | | | The soldier weighs 720 N. | (a) | (i) | Write down the equation that is used to find the pressure exerted by the soldier on the ground. | |-----|------|--| | | | | | | (ii) | Calculate the pressure exerted by the soldier when he is standing to attention, with both boots on the ground. | | | | | | | | pressure =[2] | | (b) | The | e soldier is crossing a sandy desert. | | | | plain, stating the relevant Physics, why this soldier is at an advantage over another soldier by has the same weight but smaller feet. | | | | | | | | | (c) The soldier's unit is sent to a cold country, and on one occasion he has to cross a frozen lake. Suggest one way that the soldier can reduce the risk of the ice breaking under his weight.[2] [1] [Total: 5] | (a) | (i) $(P =) F/A$ | words or symbols | B1 | | |-----|-------------------------------|--|----------|-----| | | (ii) 22 500 Pa | | B1 | | | (b) | less pressure
less sinking | | B1
B1 | | | (c) | any suggestion e.g. snow shoe | which involves increasing the area in contact with the ice | B1 | [5] | | (a) |) Explain | | | |-----|-----------|--|--| | | (i) | how gas molecules exert a force on a solid surface, | | | | | | | | | | | | | | | [1] | | | | (ii) | the increase in pressure of a gas when its volume is decreased at constant temperature. | | | | | temperature. | | | | | | | | | | | | | | | | | | (h) | Λ ω | ylinder of volume 5.0×10^3 cm ³ contains air at a pressure of 8.0×10^5 Pa. | | | (5) | | | | | | | ak develops so that air gradually escapes from the cylinder until the air in the cylinder tatmospheric pressure. The pressure of the atmosphere is 1.0×10^5 Pa. | | | | | culate the volume of the escaped air, now at atmospheric pressure. Assume that the perature stays constant. | (ii) (iii) (b) A cy A le is a Cale | | [Total: 8] | (a) | (i) | (Force exerted when) molecules hit wall / surface / solid (and rebound) Allow (force) due to momentum change in collision | B1 | | |-----|------|---|----------------|-----| | | (ii) | Molecules/atoms/particles collide with / push against walls more (often) (so) bigger force / push | B1
B1
B1 | | | | | NOT collide faster | ום | | | (b) | 8.0 | $V_1 = P_2V_2$ OR PV = constant
$1 \times 10^5 \times 5000 = 1 \times 10^5 \times V_2$
= 40 000 cm ³ | C1
C1
C1 | | | | _ | lume escaped = 40 000 - 5000 = 35 000 cm ³ | A1 | [8] | | | (i) | Explain how the air molecules exert a pressure on the inside surface of the cylinder | |-----|------|--| | () | (-) | | | | | | | | | | | | | | | | | [3] | | | (ii) | The diver gradually uses up the air in the cylinder. Explain why the pressure falls. | | | | | | | | | | | | [1] | | (b) | | e density of the water in the lake is $1000\mathrm{kg/m^3}$ and the atmospheric pressure at the face is $1.0\times10^5\mathrm{Pa}$. | | | Cal | culate the total pressure 25 m beneath the surface of the lake. | total pressure =[3] | | AKK | ING | SCHEME: | | | |-----|------|---|----------------|-----| | (a) | (i) | atoms/molecules/particles move or collide (ignore with each other) atoms/molecules/particles collide <u>with (inside) surface/wall</u> force (exerted) on wall etc. or force/unit area or force spread-out | B1
M1
A1 | | | | (ii) | fewer atoms/molecules/particles and fewer collisions (with wall) | B1 | | | (b) | hρ | =) hpg or 25 × 1.0 × 10 ³ × 10
g + p _{atm} or 25 × 1.0 × 10 ³ × 10 + 10 ⁵ or 2.5 × 10 ⁵
s × 10 ⁵ Pa *Unit penalty applies | C1
C1
A1 | [7] | ^{*}Apply unit penalty once only Complete the following statements by writing appropriate words in the spaces. (b) | The pressure of a gas in a sealed container is caused by the collisions of | |--| | with the container wall. | | An increase in the temperature of the gas increases the pressure because the | | of the increases. | | The force on the wall due to the gas is the pressure multiplied by the | | of the wall. [2] | | A mountaineer takes a plastic bottle containing some water to the top of a mountain. He removes the cap from the bottle, drinks all the water and then replaces the cap, as shown in Fig. 6.1. | | On returning to the base of the mountain, he finds that the bottle has collapsed to a much smaller volume, as shown in Fig. 6.2. | | Fig. 6.1 Fig. 6.2 (i) Explain why the bottle collapsed. | | | | | | (ii) | At the top of the mountain the atmospheric pressure was $4.8 \times 10^4 \mathrm{Pa}$ and the | | | | | | | | |------|--|--|--|--|--|--|--|--| | | volume of the bottle was 250 cm ³ . | | | | | | | | Calculate the volume of the bottle at the base of the mountain where the pressure of the air inside the bottle is $9.2\times10^4\,Pa$. Assume no change of temperature. | volume = |
[3 | |----------|--------| | volume – |
Į٧ | [Total: 7] | (a) | molecules OR atoms OR particles speed OR velocity OR kinetic energy molecules OR atoms OR particles (Surface) area any four correct gains 2 marks, two or three correct gains 1 mark | | | |-----|--|---|----------------| | (b) | (i) | (when cap is screwed on) at top of mountain: pressure of air in bottle = the low pressure of the air outside OR is less than pressure at bottom of mountain OR is low | B1 | | | | (at bottom of mountain) bottle collapses because pressure outside (bottle) is greater than pressure inside | B1 | | | (ii) | Boyle's law applies OR PV = constant OR $P_1V_1 = P_2V_2$
9.2 × 10 ⁴ × V = 4.8 × 10 ⁴ × 250
130 cm ³ | C1
C1
A1 | | | | | [Total: 7] |