The IGCSE class is investigating the stability of a block of wood.

Figs. 1.1 and 1.2 show the dimensions of the block.

Fig. 1.1 Fig. 1.2

(a) (i) On Figs. 1.1 and 1.2, measure the height h, width w and depth d of the block.

h=	 •••	 	 		 	 	 	 	 	••	 		 	 		•
<i>w</i> =	 	 	 		 	 	 	 			 	•••		 		•
d=	 	 	 	•••	 	 	 	 	 		 					
															_	٠.

(ii) On Fig. 1.2, draw the line **AC**. [1]

(iii) Measure and record the angle α between lines **AD** and **AC**.

 α =[1]

(b) A student places the block on the edge of the bench, as shown in Fig. 1.3.

Fig. 1.3

He holds the protractor next to face **ABCD** of the block, as shown in Fig. 1.3. He gently pushes the top of the block (as indicated in Fig. 1.3) so that the block tips over.

He records the angle θ between side **BC** of the block and the vertical line on the protractor. The angle θ is when the block just tips over. He repeats this procedure a suitable number of times.

Suggest the number of measurements of θ that you think would be suitable for this experiment.

(c) The student calculates the average value θ_{av} of all his values for θ .

$$\theta_{av} = \dots 20^{\circ}$$

He suggests that $\theta_{\rm av}$ should be equal to α . State whether the results support this suggestion. Justify your statement by reference to the results.

statement	 	 	••
justification	 	 	
		[:	2]

[Total: 7]

(a)	9.7, 5.7, 2.0 (accept 2) or 97, 57, 20 <u>all</u> given to correct unit line AC drawn correctly, corner to corner $\alpha = 18 - 20^{\circ}$	[1 [1 [1
(b)	number from 3 to 20 with no unit	[1
(c)	correct statement for results (expect Yes) idea of within (or beyond) experimental accuracy	[1 [1 [Total: 7