(a) Show that Eli receives $\$ 3200$.
(b) Conrad buys a toy for $\$ 65$.

He sells it for $\$ 55$.

Calculate the percentage loss.
\qquad
(c) Delia invests $\$ 2500$ at a rate of 2.5% per year simple interest.

Calculate the interest Delia has at the end of 8 years.
\$
(d) Eli invests $\$ 2400$ at a rate of 2.4% per year compound interest.

Calculate the interest Eli has at the end of 8 years.
(e) Conrad buys a coat in a sale.

The sale price is $\$ 79.80$ after a reduction of 5%.
Calculate the original price of the coat.

MARKSCHEME:

(a)	$\frac{8000}{5+7+8} \times 8[=3200]$	M2	M1 for $8000 \div(5+7+8)$ If 0 scored $\mathbf{S C 1}$ for $\frac{3200}{8} \times 20=8000$ oe
(b)	15.4 or $15.38 \ldots$	3	$\begin{aligned} & \text { M2 for } \frac{65-55}{65}[\times 100] \text { or } \frac{55}{65} \times 100 \text { or } 1-\frac{55}{65} \\ & \text { or M1 for } 65-55 \text { or } \frac{55}{65} \end{aligned}$
(c)	500	2	M1 for $\frac{2500 \times 2.5 \times 8}{100}$ oe
(d)	501.42	3	M2 for 2400×1.024^{8} oe (2901 or 2901.4[0] or $2901.42 \ldots$) or M1 for 2400×1.024^{n} oe where $n>1$
(e)	84	3	M2 for $79.80 \div\left(1-\frac{5}{100}\right)$ oe or M1 for recognising 79.80 is 95%

Every year the value of Xavier's car decreases by 10%.
2 The value is now $\$ 12960$.
(a) Calculate the value of the car 2 years ago.

$$
\$
$$

(b) Calculate the number of complete years it will take for the value to decrease from $\$ 12960$ to less than $\$ 6480$.

MARKSCHEME:

(a)	16000	$\mathbf{2}$	M1 for $12960 \div\left(1-\frac{10}{100}\right)^{2}$ oe or B1 for 14400
(b)	7 nfww	$\mathbf{3}$	B2 for 6.58 or 6.578 to 6.579 or M2 for $\frac{\log \left(\frac{6480}{12960}\right)}{\log 0.9}$ oe or appropriate sketch or at least two trials with $n>3$
			or M1 for $12960 \times\left(1-\frac{10}{100}\right)^{n}=6480$ oe if 0 scored, $\mathbf{S C 1}$ for answer 9 nfww, coming from 16000

\qquad
(b) (i) Tami walks for 10 minutes at $x \mathrm{~km} / \mathrm{h}$ and then runs y kilometres in z minutes.

Find her average speed in terms of x, y and z.
Give your answer in km / h, in its simplest form.
(ii) When Tami walks for 10 minutes at $3 \mathrm{~km} / \mathrm{h}$ and then runs for 20 minutes, her average speed is $11 \mathrm{~km} / \mathrm{h}$.

Find the distance Tami runs.
(c) Urs walks for t minutes at $3 \mathrm{~km} / \mathrm{h}$ and then runs for $(t+\quad 10$ minutes at $7 \mathrm{~km} / \mathrm{h}$.
(i) Show that his average speed is $\frac{5 t+35}{t+5} \mathrm{~km} / \mathrm{h}$.
(ii) When the average speed is $5 \frac{1}{2} \mathrm{~km} / \mathrm{h}$, find the value of t.

$$
t=
$$

MARKSCHEME:

(b)(i)	$\frac{10 x+60 y}{10+z} \text { or } \frac{10(x+6 y)}{10+z}$	3	M2 for $\left(\frac{x \times \frac{10}{60}+y}{\frac{10}{60}+\frac{z}{60}}\right)$ oe or M1 for total distance $=x \times \frac{10}{60}+y$ or total time $=\frac{10}{[60]}+\frac{z}{[60]}$
(b)(ii)	5	2	M1 for correct substitution of $x=3, z=20$ and average speed $=11$ in their formula which must contain x, y and z. or B1 for 5.5 oe or 330 seen

(c)(i)	$\frac{3 t}{60}+\frac{7(t+10)}{60}$ oe	M1	
	$\frac{\text { M1 }}{[60]}+\frac{t+10}{[60]}$	The two M1s may be seen together in a correct fraction	
	Correct simplification to $\frac{5 t+35}{t+5}$ seen	dep on M1M1 At least one line of working and no errors	
(c) (ii)	15	$\mathbf{2}$	$\mathbf{M 1}$ for $(5 t+35)=\left(5 \frac{1}{2}\right)(t+5)$ oe or better

4
(a) Work out.

$$
\frac{\sqrt[3]{402}}{3.15^{2}}
$$

(b) Write 130.47 correct to
(i) one decimal place,
(ii) one significant figure.
(c) Work out 23% of $\$ 76.80$.
\$
(d) $\$ 4200$ is shared in the ratio $3: 4: 6: 8$.

Find the difference between the largest share and the smallest share.
\$
(e) Write down an irrational number less than 10 .
\qquad
(f) Work out $7.31 \times 10^{-2}+1.56 \times 10^{-1}$. Give your answer in standard form.

MARKSCHEME:

1(a)	0.744 or 0.7437 to 0.7438	1	
(b)(i)	130.5 final answer	1	
(b)(ii)	$100\lfloor .00\rfloor$ final answer	1	
(c)	17.66	2	M1 for 0.23×76.8 oe
(d)	1000	3	M2 for $\frac{8-3}{3+4+6+8} \times 4200$ oe or M1 for $\frac{4200}{3+4+6+8}[\times 3$ or 8$]$ oe
(e)	Any irrational number less than 10	1	e.g. $\pi, \sqrt{12}, \mathrm{e}$; and not with decimal or fractional equivalent
1(f)	$2.29[1] \times 10^{-1}$ final answer	2	B1 for figs 229[1]

Flavia makes china cats.
They each cost $\$ 22.60$ to make.
(a) Flavia sells some of them to Ari.

She makes a profit of 35% on each cat.
Calculate the price Ari pays for each cat.
(b) Ari sells each cat for $\$ 43$.

Calculate Ari's percentage profit.
\qquad
(c) Jean buys 92 of Flavia's cats.

This is 15% more than the number Ari bought.
Calculate the number of cats that Ari bought.
(d) Jean bought the cats for $\$ 32$ each.

He sells some of the cats for $\$ 45$ each.
For the rest of the cats he reduces the price by 5% each day.
Find the number of reductions he has made when the price first falls below $\$ 32$.

MARKSCHEME:

(a)	30.51	2	M1 for $22.6 \times\left(1+\frac{35}{100}\right)$ oe
(b)	40.9 or 40.93 to 40.94	3	M2 for $\frac{43 \text {-their } 30.51}{\text { their } 30.51}[\times 100]$ oe or M1 for 43 - their 30.51 or $\frac{43}{\text { their } 30.51}$
(c)	80	3	M2 for $92 \div\left(1+\frac{15}{100}\right)$ oe or M1 for $92=115 \%$ oe
(d)	7 nfww	3	M2 for $\frac{\log \left(\frac{32}{45}\right)}{\log 0.95}$ soi by 6.64 to 6.65 or trials as far as $n=5$ or M1 for 45×0.95^{n} oe soi

In a sale, a shop reduces all its prices by 15%.
(a) Calculate the sale price of a television originally costing $\$ 630$.
\$ \qquad [2]
(b) The price of a fridge in the sale is $\$ 952$.

Calculate the original price.
(c) After one week the shop reduces the price of the television in part (a) by a further 5\% each week until it is sold.

Calculate the number of weeks from the start of the sale until the television reaches half the original price.

MARKSCHEME:

(a)	535.5[0] final answer	2	M1 for $630 \times\left(1-\frac{15}{100}\right)$ oe
(b)	\$1120	3	M2 for $952 \div\left(1-\frac{15}{100}\right)$ oe or M1 for 85% associated with 952
(c)	12 nfww	4	M3 for $n \log \left(1-\frac{5}{100}\right)=\log \left(\frac{\frac{1}{2}(630)}{\text { their } 535.50}\right)$ oe soi by 10.3 or 10.4 or 10.34 to $10.36 \ldots$ or correct trials as far as 10 and 11 or suitable sketch(es) e.g. $y=535.5 \times 0.95^{x}$ and $y=315$ or M2 for $\left(1-\frac{5}{100}\right)^{n}=\left(\frac{\frac{1}{2}(630)}{\text { their } 535.50}\right)$ oe or at least 3 correct trials or final answer 11 nfww or M1 for their $535.5 \times\left(1-\frac{5}{100}\right)^{n}=\frac{1}{2}(630)$ soi oe

(a) Show that Louis receives $\$ 22$.
(b) Louis and Maria each spend $\$ 6$ from their share of the $\$ 50$.

Find the new ratio Louis' money : Maria's money.
\qquad :
(c) Louis spends $\frac{17}{32}$ of his remaining money to buy a bus ticket.

Calculate the cost of the bus ticket.
\$
(d) In a sale, a bookshop reduces the price of each book by 10%. Maria buys two of these books.
(i) The first book Maria buys has an original price of $\$ 6$.

Calculate how much Maria pays for this book.
(ii) Maria pays $\$ 3.69$ for her second book.

Calculate the original price of this book.

MARKSCHEME:

(a)	$\frac{11}{11+14} \times 50$ or $\frac{11}{25} \times 50$ oe	M1	
(b)	$16: 22$ oe isw	$\mathbf{2}$	M1 for $22-6$ and $50-22-6$ oe If 0 scored, $\mathbf{S C} 1$ for $22: 16$ oe
(c)	$8.5[0]$	$\mathbf{1}$	
(d)(i)	$5.4[0]$	$\mathbf{2}$	M1 for 0.9×6 oe
(d)(ii)	$4.1[0]$ nfww	$\mathbf{3}$	M2 for $\frac{3.69}{0.9}$ oe or M1 for associating 3.69 with 90%

