SMART EXAM RESOURCES SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4 TOPIC: PRESSURE SET 4 QP-MS

Fig. 3.1 shows an insect called a pond skater.

1

Pond skaters spread their weight over their 6 legs so that they can move over the surface of water.

- (a) The pond skater has a mass of 0.25g and is stationary on the surface of the water.
 - (i) Use the values in the list to complete the sentences about the pond skater.

The gravitational field strength, g, is 10 N/kg.

You can use each value once, more than once or not at all.

	0 N	0.0025 kg	0.0025 N	0.25g	0.25 kg	2.5 N	
	The weight	of the pond skater i	S				
	The force acting upwards on the pond skater by the water is						
	The resultant force acting on the pond skater is						
(ii)	The pond s surface of t	kater stands on all he water.	6 legs, with the foo	ot of each leg m	naking contact wi	th the	
	The area of	each foot is 1.2×1	0 ⁻⁷ m ² .				
	Calculate th	ne pressure exerted	by each foot on the	e surface of the	water.		

pressure = Pa [2]

(a)(i)	(a)(i) 0.0025 N ; 0.0025 N and 0 (N) ;			
(a)(ii)	(P =) F/A or $0.0025/(6 \times 1.2 \times 10^{-7})$; (P =) 3500 (Pa);	2		
	snaterall			

Fig. 9.1 shows a person sitting in an inflatable raft. 2

Fig. 9.1

- www.st (b) The combined weight of the raft and the person is 1100 N. The raft exerts a pressure of 500 Pa on the surface of the water.
 - (i) Calculate the area of raft in contact with the water.

area = m² [2]

(A =) F÷ P or 1100÷ 500 ; 2.2 (m²) ;

2

Fig. 3.1 shows a man in a canoe on a lake.

The combined mass of the man and the canoe is 120 kg.

Fig. 3.1

The canoe exerts a pressure of $0.5 \, \text{kPa}$ on the surface of the water.

Calculate the area of canoe in contact with the surface of the water.

The gravitational field strength, g, is 10 N/kg.

area = m² [3]

(W =) mg or 120 × 10 or 1200 (N) ; (A =) W / P or 1200 / 500 ; 2.4 (m²) ;

Fig. 3.1 shows a simple turbine, similar to those used in a nuclear power station. 4

Fig. 3.1

www.sme The high-pressure steam is at a pressure of 1.8×10^7 Pa. (i)

Blade **A** has a surface area of 0.12 m^2 .

Show that the force acting on blade **A** is 2.2×10^6 N.

[1]

$1.8 \times 10^7 \times 0.12$;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1

5 Fig. 3.1 shows a man in a canoe on a lake.

The combined mass of the man and the canoe is 120 kg.

- (a) The canoe moves at a speed of 4.0 m/s.
 - (i) Calculate the kinetic energy of the man and the canoe.
 - kinetic energy = J [2]

(ii) The canoe takes $5.0 \,\text{s}$ to slow down to a speed of $0.5 \,\text{m/s}$.

Calculate the constant deceleration of the canoe.

deceleration = m/s² [3]

(iii) On Fig. 3.2 draw a speed-time graph to show the canoe's deceleration.

Fig. 3.2

9

(b) The canoe exerts a pressure of $0.5 \, \text{kPa}$ on the surface of the water.

Calculate the area of canoe in contact with the surface of the water.

The gravitational field strength, *g*, is 10 N/kg.

area = m² [3]

Question	Answer	Marks
3(a)(i)	(KE =) ½ mv ² or ½ × 120 × 4 ² ; 960 (J) ;	2
3(a)(ii)	$(\Delta v =) 3.5 (m/s);$ (a =) $\Delta v / t \text{ or } 3.5 / 5.0;$ 0.7 (m/s ²);	3
3(a)(iii)	$ \begin{array}{c} $	1
3(b)	(W =) mg or 120 × 10 or 1200 (N) ; (A =) W / P or 1200 / 500 ; 2.4 (m ²) ;	3