DISTANCE-TIME GRAPHS

1 A train of mass 5.6×10^5 kg is at rest in a station.

At time t = 0 s, a resultant force acts on the train and it starts to accelerate forwards.

Fig. 1.1 is the distance-time graph for the train for the first 120 s.

Fig. 1.1

- (a) (i) Use Fig. 1.1 to determine:
 - 1. the average speed of the train during the 120 s

2. the speed of the train at time $t = 100 \,\mathrm{s}$.

(11)	at time $t = 20 \mathrm{s}$.	ition
		[2]
(i)	The initial acceleration of the train is 0.75 m/s ² .	
	Calculate the resultant force that acts on the train at this time.	
	resultant force =	[2]
(ii)	At time $t = 120 \mathrm{s}$, the train begins to decelerate.	
	State what is meant by deceleration.	
		[1]
	[Tota	l: 8]
	(i)	at time $t = 20 \text{s}$. (i) The initial acceleration of the train is 0.75m/s^2 . Calculate the resultant force that acts on the train at this time. resultant force =

1(a)(i)1	(4800 / 120 =) 40 m / s	B1
1(a)(i)2	(v =) gradient of any part of straight line	C1
	Value between 50 and 60 m/s	A1
1(a)(ii)	At t = 20 s, acceleration > zero / acceleration is taking place / greater acceleration than at 100 s	B1
	At t = 100 s, acceleration = zero / 0	B1
1(b)(i)	$(F =) ma OR 5.6 \times 10^5 \times 0.75$	C1
	$4.2 \times 10^5 \text{N}$	A1
1(b)(ii)	Speed / velocity decreases (with time) OR slowing down OR negative acceleration OR Rate of decrease of speed / velocity	B1

A lorry is travelling along a straight, horizontal road.

Fig. 1.1 is the distance-time graph for the lorry.

Fig. 1.1

- (a) Using Fig. 1.1, determine:
 - (i) the speed of the lorry at time t = 30 s

(ii) the average speed of the lorry between time $t = 60 \, \text{s}$ and time $t = 120 \, \text{s}$.

	(b) At time $t = 30 \text{s}$, the total resistive force acting on the lorry is $1.4 \times 10^4 \text{N}$.				
	(i)	Using Fig. 1.1, determine the magnitude of the acceleration of the lorry at time	t = 30 s.		
		acceleration =	[1]		
	(ii)	Determine the forward force on the lorry due to its engine at time $t = 30 \mathrm{s}$.			
		forward force =	[1]		
(c)	Des	scribe the motion of the lorry between time $t = 60 \text{s}$ and time $t = 130 \text{s}$.			
			[2]		
			[Total: 8]		

(a)(i)	(v =) gradient or 1800 / 60 or 900 / 30	C1
	30 m/s	A1
،(a)(ii)	(v =) d/t or (average speed =) d/t OR $(2700 - 1800)/(120 - 60) = 900/60$	C1
	(v =) 15 m/s	A1
(b)(i)	$0 (m/s^2)$	B1
(b)(ii)	1.4 × 10 ⁴ N	B1
(c)	speed / velocity decreases (with time) or negative acceleration or deceleration	B1
	to zero (speed) / stationary	B1

Fig. 1.1 is the distance-time graph for a moving car.

Fig. 1.1

- (a) On Fig. 1.1, mark a point P where the acceleration of the car is zero. [1]
- **(b)** Determine:
 - (i) the speed of the car at time t = 15 s

(ii) the average speed of the car between time t = 30 s and time t = 45 s.

(c) At time $t = 45 \,\text{s}$, the car starts to decelerate. At time $t = 55 \,\text{s}$ and at a distance of 400 m from the starting point, the car stops. It then remains stationary for 5.0 s.

[Total: 8]

[3]

(a)	P marked on line between t = 0 s and t = 30 s	B1
^ (b)(i)	(v =) gradient or 150/30 or appropriate division using other points	C1
	5.0 m/s	A1
, (p)(ii)	(v =) x/t or (300 – 150)/(45 – 30) or 150/15	C1
	10 m/s	A1
(c)	gradient decreasing	B1
	smooth transition to horizontal and line not too thick	B1
	horizontal to (60 s, 400 m)	B1

A girl rides her bicycle along a straight level road. Fig. 2.1 shows a graph of her distance moved against time.

Fig. 2.1

(a)	Describe	her	motion
-----	----------	-----	--------

(i) from A to B,

(ii) from B to C,

(b) Calculate

4

(i) her average speed from A to D,

(ii) her maximum speed.

(a) (i	Increasing speed / acceleration	B1
(ii	Constant / steady / uniform speed or motion	B1
(iii	Decreasing speed / deceleration / braking / slowing / stopping / negative acceleration	B1
(b) (i	(Total) distance / (total) time OR d/t OR 400 / 60 6.67 m/s at least 2 s.f.	C1 A1
(ii	Mention of maximum gradient OR clear that whole or part of B to C is used Use of correct data from graph to $+/-\frac{1}{2}$ square Answer rounds to 9.2 to 9.4 m/s, at least 2 s.f.	C1 C1 A1
		[Total: 8]

5 Fig. 1.1 is a distance/time graph showing the motion of an object.

Fig. 1.1

(a) (i) Describe the motion shown for the first 2s, calculating any relevant quantity.

	13.
	l∸.
After 2s the object accelerates	

(ii) After 2s the object accelerates.

On Fig. 1.1, sketch a possible shape of the graph for the next 2s.

[1]

(b) Describe how a distance/time graph shows an object that is stationary.

[1]

(c) Fig. 1.2 shows the axes for a speed/time graph.

Fig. 1.2

On Fig. 1.2, draw

- (i) the graph of the motion for the first 2s as shown in Fig. 1.1,
- (ii) an extension of the graph for the next 2s, showing the object accelerating at 2 m/s².

(d)	Describe how a speed/time graph shows an object that is stationary.		
	[2]		
	[Total: 9]		

(a)	(i)	constant/steady/uniform speed/velocity OR speed/velocity = 2.5 (m/s) speed/velocity = 2.5 m/s accept fraction, average speed/velocity = 2.5 m/s	B1 B1	[2]
	(ii)	shape curving upward but not to vertical, at least to 3.5s unless reaches 25 m	B1	[1]
(b)		izontal (straight) line OR careful sketch ept parallel to time/x-axis	B1	[1]
(c)	tole	rance on both axes ± ½ small square throughout both parts		
	(i)	horizontal straight line at 2.5 m/s from 0 to 2 s, ecf from (a)(i)	B1	
	(ii)	straight line rising to the right as far as the edge of the graph area $\Delta v = 4$ m/s or gradient clearly 2 m/s ²	M1 A1	[3]
(d)	at C	izontal (straight) line m/s ept for both marks: line in/along time/x-axis OR line with y/v = 0 OR careful tch	M1 A1	[2]
			[Tota	l: 9]

6 (a) Fig. 1.1 shows the distance-time graphs for three different objects A, B and C.

Fig. 1.1

Describe the motion of each of the objects A, B and C by selecting the appropriate description from the list below.

	constant speed	increasing speed	decreasing speed	stationary
Α				
В				
C.				
				2]

Fig. 1.2

Describe the motion of each of the objects D, E and F by selecting the appropriate description from the list below.

constant speed	constant acceleration	increasing acceleration	stationary
D			
E			
1			[5]

(a)	B constant speed C stationary Note: one mark lost for e.e.o.o.	B2
(b)	D increasing acceleration E constant acceleration F constant speed Note: one mark lost for e.e.o.o.	В2