

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43 October/November 2016

Paper 4 (Extended) MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0607	43

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Q	uestion	Answer	Mark	Part Marks
1	(a) (i)	43	1	
	(ii)	14.5 or14.54 to 14.55	1	
	(b) (i)	$3.16 \times 10^{11} \text{ or } 3.158 \times 10^{11}$	2	B1 for figs 316 or 3158 or $k \times 10^{11}$ where $1 \le k \le 10$
	(ii)	8.23×10^7 or 8.228×10^7	2	B1 for figs 823 or 8228 or $k \times 10^7$ where $1 \le k \le 10^7$
2	(a) (i)	276480×0.25 oe $0.75 \times 276480 \times 0.055 \times 10$ oe adding with no errors	M1 M1 M1	Dependent on M1 M1
	(ii)	19 nfww	4	B3 for 18.2 or 18.18 or 18 (with correct working) or M2 for 0.055 × 276480 × n = 0.25 × 276480 + 0.055 × 0.75 × 276480 × n oe or M1 for 0.055 × 276480 × n or 0.25 × 276480 + 0.055 × 0.75 × 276480 × n
	(b)	256 000	3	M2 for 276 480 ÷ 1.08 oe or M1 for 108% = 276 480
3	(a)	Reflection $x = -2$	1 1	In all three parts of (a) give 0 for any indication of second transformation.
	(b)	Rotation 90° [anticlockwise] oe (5, 1)	1 1 1	
	(c)	Stretch <i>x</i> -axis oe invariant [stretch factor] 3	1 1 1	

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060743

Q	uestion	Answer	Mark	Part Marks
4	(a) (i)	96	2	M1 for $\frac{1}{3} \times 6 \times 6 \times 8$
	(ii)	8.54 or 8.544	2	M1 for $8^2 + 3^2$
	(b) (i)	84	3FT	M2 for $\frac{7}{8} \times their$ (a)(i) oe or M1 for 96 × $(\frac{1}{2})^3$ or $\frac{1}{3} \times 3 \times 3 \times 4$ soi by 12
	(ii)	122 or 121.8 to121.9	5	M3 for $4 \times \frac{3}{4} \times \frac{1}{2} \times 6 \times their$ (a)(ii) oe or $4 \times \frac{1}{2} \times (6+3) \times \frac{1}{2} their$ (a)(ii) oe
				or M2 for $\frac{3}{4} \times \frac{1}{2} \times 6 \times their$ (a)(ii) oe or $\frac{1}{2} \times (6+3) \times \frac{1}{2} their$ (a)(ii) oe
				or M1 for $\frac{1}{2} \times 6 \times their$ (a)(ii) or $\frac{1}{2} \times 3 \times \frac{1}{2} their$ (a)(ii) and M1 for $36 + 9 + 4 \times their$ trapezium area oe
5	(a)	Correct sketch 25 y $(x)=x^{-3}-4x+6$ 10 5 -10 x x	2	B1 for correct cubic shape with maximum on left of minimum
	(b)	-2.67 or -2.669 0.524 or 0.5239 to 0.5240 2.15 or 2.145	1 1 1	
	(c) (i)	Maximum (-1.15, 9.08) Minimum (1.15, 2.92)	3	or (-1.155 to -1.154, 9.079) or (1.154 to 1.155, 2.920 to 2.921) B2 for either maximum or minimum or B1 for 1 correct value
	(ii)	k < 2.92 and $k > 9.08$	1FT	or above accuracy.
	(d)	Rotational Order 2 (0, 6)	1 1 1	

 Page 4
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2016
 0607
 43

Qı	uestion	Answer	Mark	Part Marks
6	(a)	(4, -1), (-6, -1), (8, 7)	3	B1 for each
	(b)	(13, 7)	2	B1 for each co-ordinate
	(c)	$y = -\frac{7}{4}x - \frac{11}{4}$ oe	4	isw correct 3 term equation B1 for $\frac{4}{7}$ B1FT for $-\frac{7}{4}$ M1 for correct method of finding 'c'.
7	(a) (i)	[6], 18, 40, 77, 97, 114, [120]	1	
	(ii)	Correct curve	3	All marks in (a) dependent on increasing cumulative frequencies B2FT for 6 points correctly plotted B1FT for 4 or 5 points correctly plotted If 0 scored SC1 for 'correct' curve translated consistently to left.
	(iii)	7100 to 7400	1FT	FT <i>their</i> graph
	(iv)	750 to 1150	2	B1 for LQ = 6700 to 6900 or UQ = 7650 to 7850
	(v)	9 or 10 or 11	1	
	(b)	Correct graph	4	 B3 for 6 correct heights or B2 for 4 or 5 correct heights or B1 for 2 or 3 correct heights B1 for correct widths If 0 scored B1 for correct frequency densities [0.006], 0.024, 0.044, 0.074, 0.04, 0.017, 0.006
8	(a)	360 – (155 + 115) oe	1	e.g. 25 + 65 with those angles marked on diagram
	(b)	36.9 or 36.86 to 36.87	2	M1 tan $[C] = \frac{60}{80}$ oe
	(c)	100 or 99.93 to 100.04	2	M1 for $60^2 + 80^2$ oe
	(d)	94.0 or 94.1 or 94.01 to 94.06	4	B1FT for $ACD = 63.1$ to 63.13 M1 for $75^2 + (their 100)^2 - 2 \times 75 \times their 100 \times \cos their 63.1$ A1 for 8838 to 8846

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060743

Qı	uestion	Answer	Mark	Part Marks
	(e)	123 or 123.4 to 123.5	4	M2 for $\frac{75\sin(their63.1)}{their94.1}$ or for [cos =] $\frac{(their 100)^2 + (their 94.1)^2 - 75^2}{2 \times (their 100) \times (their 94.1)}$ or M1 for $\frac{\sin CAD}{75} = \frac{\sin(their63.1)}{their94.1}$ or for $75^2 = (their 100)^2 + (their 94.1)^2$ - 2(their 100)(their 94.1)
				A1 for 45.3 or 45.4 or 45.29 to 45.37
9	(a)	9 hours 52 mins	3	B2 for 9.870 or M1 for 760 ÷ 77
	(b) (i)	$\frac{270}{x}$	1	
	(ii)	$\frac{270}{x} + \frac{490}{x+4} = 62$ oe	M1	
		270(x+4) + 490x = 62x(x+4) oe	M1	Could be over common denominator
		Completion with no errors	A1	Must be at least one intermediate step
	(iii)	(31x + 54)(x - 10)	M1	or correct substitution into formula or reasonable sketch
		10 and $-\frac{54}{31}$	B2	or B1 for either
		or 10 because <i>x</i> cannot be negative 14 cao	B1	10 without support scores only the B1
10	(a) (i)	(2x-1)(x-1)	2	SC1 for $(2x + a)(x + b)$ where $ab = 1$ and $a + 2b = -3$
	(ii)	$\frac{(2x+1)(x-2)+3}{x-2}$ oe	M1	
		$\frac{2x^2 - 4x + x - 2 + 3}{x - 2}$	A1	Allow $-3x$ for $-4x + x$
		$\frac{(2x+1)(x-2)+3}{x-2} \text{ oe} \\ \frac{2x^2-4x+x-2+3}{x-2} \\ \frac{2x^2-3x+1}{x-2} \\ 2x^2-3x$	A1	
	(b) (i)	Correct sketch 20 y $(x)=2x+1/(x-1)/(x-2)/(x)=2x+1/(x-2)/(x)=2x+1/(x)=2$	2	With no undue overlap at $x = 2$ or serious curving back B1 for either branch correct

Page 6Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060743

Q	uestion	Answer	Mark	Part Marks
	(ii)	Correct line	2	Not intersecting either branch B1 for line with positive gradient and positive y intercept
	(iii)	y = 2x + 1 $x = 2$	1 1	
	(iv)	0.5 1	1 1	
11	(a)	WalkingCyclingTotalMale[16]13[29]Female12921Total28[22][50]	2	B1 for 3 or 4 correct
	(b)	$\frac{462}{2450}$ oe	2	M1 for $\frac{22}{50} \times \frac{21}{49}$ oe
	(c)	$\frac{384}{756}$ oe	3	M2 for $\frac{16}{their \ 28} \times \frac{their \ 12}{their \ 28-1} + \frac{their \ 12}{their \ 28} \times \frac{16}{their \ 28-1} \text{ oe}$ or M1 for one of above products
12	(a)	$y = \frac{10}{\sqrt{x}}$	2	M1 for $y = \frac{k}{\sqrt{x}}$
	(b)	$\frac{100}{9}$ oe	2FT	M1 for $3\sqrt{x} = their k$
	(c)	$a = 4000, n = -\frac{3}{2}$	3	B2 for either or M1 for $z = c \left(\frac{their k}{\sqrt{x}}\right)^3$ oe
				(\sqrt{x})