SMART EXAM RESOURCES SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4

TOPIC: MOTION SET 8 QP-MS

Fig. 3.1 shows a simple turbine, similar to those used in a nuclear power station.

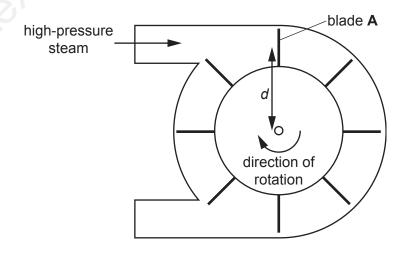


Fig. 3.1

	[1]
	Explain why the velocity of blade A changes.
(iii)	When the turbine spins, blade A moves with a constant speed but a changing velocity.

the <u>direction</u> (of blade A) changes ;		1

Fig. 6.1 shows a bee collecting pollen from a flower.

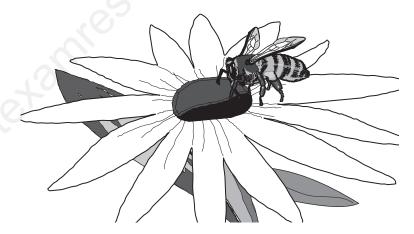


Fig. 6.1

- (a) The maximum speed of a bee is 5.8 m/s.
 - (i) Calculate the maximum distance a bee can travel in 60 seconds.

maximum distance = m [2]

i(a)(i)	$(d =) v \times t/(d =) 5.8 \times 60$; 348 or 350 (m);	2

Fig. 9.3 shows a speed-time graph for part of the toy boat's journey.

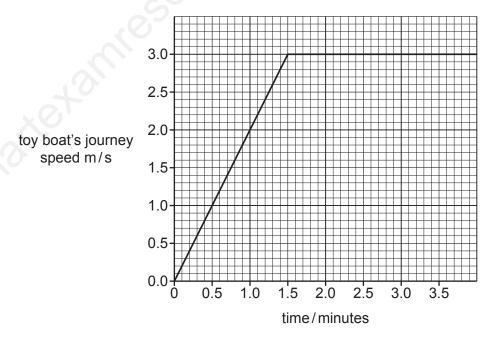


Fig. 9.3

(i)	Use Fig. 9.3 to describe the motion of the toy boat for this part of the journey.
	[2]
(ii)	Suggest why the shape of this graph is not a realistic description of the motion of the toy boat at 1.5 minutes.
	[1]

)(i)	initially / in first 1.5 mins, constant acceleration; then / after 1.5 min, acceleration is zero / constant speed;	2
(ii)	(idea that) change in acceleration would take some time / change more gradually / graph would be a curve at 1.5 mins;	1

- **1** Meteoroids are lumps of rock which travel through space.
 - (a) During its journey through space, a meteoroid travels at a constant speed of 25000 m/s.
 - (i) Calculate the time taken for the meteoroid to travel 1000 m.

(ii) Fig. 3.1 shows a speed–time graph for the meteoroid as it enters the atmosphere of a planet.

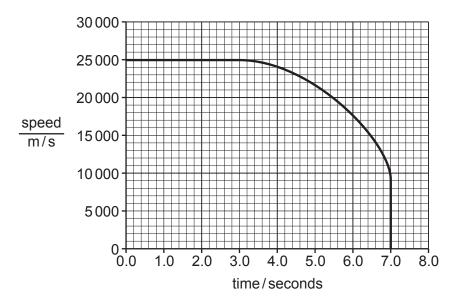


Fig. 3.1

Describe the motion of the meteoroid shown in Fig. 3.1.

Question	Answer	Marks
(a)(i)	$(t =) d/v \text{ or } 1000/25000 \; ; \; (in any form) \ (t =) 0.04 \; (s) \; ;$	2
(a)(ii)	0–3 s / initially constant speed; then slows down / decelerates / negative acceleration / non-constant deceleration; (at 7 s) it stops / hits the ground / speed becomes 0;	3

5 Fig. 9.1 shows the motion of a sprinter running a race.

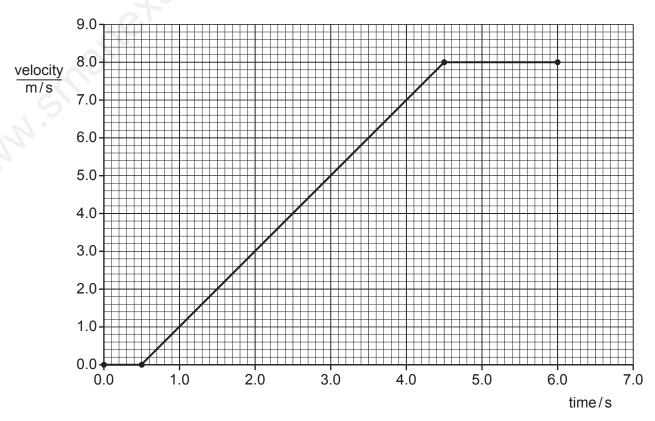


Fig. 9.1

(a) Describe the motion of the sprinter during the first 0.5 seconds of the	ne race.
---	----------

[1]

(b) Show that the maximum acceleration of the sprinter is $2.0\,\text{m/s}^2$.

[1]

(c) This acceleration is caused by a resultant force of 160 N.

Calculate the mass of the sprinter.

(a)	stationary ;	1
(b)	(a =) 8.0/4.0;	1
(c)	(m =) F/a or 160/2.0; 80 (kg);	2