MOTION-SET-1-QP-MS

(a) A motor manufacturer is testing his new electric car.

The driver is given instructions on how to drive over a set distance on a special test track, as shown in Fig. 5.1.

Poles are placed 10 m apart and a photograph of the position of the car is taken every second.

Fig. 5.1
The distances for one test run are recorded in Table 5.1.
Table 5.1

time $/ \mathrm{s}$	0	1	2	3	4	5	6	7	8	9	10
distance $/ \mathrm{m}$	0	8	18	34	52		99		161	199	239

(i) Use Fig. 5.2 to record in Table 5.1 the distances travelled after 5 and 7 seconds.

Take your measurement from the front of the car.

Fig. 5.2
(ii) On the grid provided plot a graph of distance/m (vertical axis) against time/s.

Draw a smooth curve of best fit.

(iii) Explain what the shape of the graph tells you about the motion of the car.
\qquad
(iv) Calculate the average speed of the car over the first six seconds.
\qquad

Fig. 5.3 shows sketch graphs of 3 more tests runs.

Fig. 5.3
(b) (i) State in what ways test runs \mathbf{A} and \mathbf{B} are similar and different.
similar
different \qquad
\qquad
(ii) Suggest what may have happened at point \mathbf{X} in test run \mathbf{C}.
\qquad

MARKING SCHEME

(a) (i) 74 ;

128 ;
(ii) scales linear and labelled;
points ;
smooth curve ;
(iii) speeds up/accelerates ; [1]
(iv) $(99 \div 6)=16.5(\mathrm{~m} / \mathrm{s})$;
(b) (i) similar. constant speed; different \mathbf{A} is faster than \mathbf{B};
(ii) it stops/crashed/engine failure (not run out of petrol) ;

