Smart Exam Resources SMART EXAM RESOURCES 0478 IGCSE COMPUTER SCIENCE PAPER-1 NUMBER SYSTEMS QP-MS

A user enters data that is hexadecimal into a computer system. The data is converted to binary to be processed by the computer.

(a)	(i)	Give one similarity between hexadecimal and binary.	
	(ii)	Give two differences between hexadecimal and binary.	
		1	
		2	
			[2]
(b)	Data	a that is denary can also be converted to binary.	
	Give	e the binary number for each of the three denary numbers.	
	15 .		
	180		
	235		 [3]
	Wor	rking space	

(c)	Denary numbers can also be converted to hexadecimal.
	Give the hexadecimal number for each of the three denary numbers.
	14
	100
	250
	[3
	Working space
(d)	A binary integer that is stored in a register in the computer has a logical left shift performed on it
	(i) Describe the process of the logical left shift that is performed on the binary integer.
	[2
	(ii) State what effect this will have on the binary integer.
	()
	[1
(0)	
(e)	A negative binary integer needs to be stored in a register in the computer.
	Give the name of the number system that can be used to represent negative binary integers
	[1

(a)(i)	They are both number systems	1
(a)(ii)	Binary is base-2 whereas hexadecimal is base-16 Binary only uses numbers whereas hexadecimal also uses letters // Binary only uses 0 and 1 whereas hexadecimal uses 0 to 9/A to F	2
(b)	• (0000)1111 • 10110100 • 11101011	3
(c)	• E • 64 • FA	3
(d)(i)	Any two from: • Each/All/Every value/digit/bit in the binary number is shifted/moved to the left • The left most/most significant bit is lost • A 0 is added as the right most/least significant bit	2
(d)(ii)	The binary integer is multiplied by 2	1
(e)	Two's complement	1

2	Dat	ta cai	n be measured using different units of storage.	
	(a)	Tick	x (✓) one box to show which of the following is the largest unit of data storage.	
		A B	tebibyte (TiB) pebibyte (PiB)	
		C D	mebibyte (MiB) gibibyte (GiB)	[1]
	(b)	A co	omputer has primary storage.	
		Giv	e one example of primary storage.	
		Exp	plain the purpose of your chosen example.	
		Exa	ample	
		Exp	planation	
				[3]
	(c)	All	data is converted to binary to be processed by a computer.	
		(i)	Calculate the binary number for the denary number 175. Show all your working.	
				[2]

	(ii)	Give the binary number for the given hexadecimal numbers.
		15
		2D
		091
		[3]
		Working space
(d)	Bina	ary integers can be added together.
		I the two binary integers using binary addition. Show all your working. Give your answer inary.
		11100011
		+ 11001100
		[4]
(e)		culate the denary number for the two's complement binary integer 10001110. Show all r working.
		[2]

(a)	В	1
(b)	One mark for correct example. Two marks for matching explanation. RAM To store data/instruction that is currently in use To store software/programs that are currently in use For volatile storage // to store data temporarily To allow data to be accessed directly by the CPU/processor // To allow data to be stored closer to the CPU/processor ROM To store the BIOS To store the bootstrap/bootloader To store start-up instructions To store the firmware For non-volatile storage // to store data permanently To store data/instructions that should not change (unless needed) Cache To store frequently used instructions/data For volatile storage // to store data temporarily	3
(c)(i)	One mark for valid working, for example: 128 + 32 + 8 + 4 + 2 + 1 One mark for correct answer: 10101111	2
(c)(ii)	• 0001 0101 • 0010 1101 • 0000 1001 0001	3
(d)	One mark for each correct nibble. One mark for method of working, for example: carries. One mark for identification of overflow. 1 11100011 + 11001111	4
(e)	One mark for correct working, for example: flip and add One mark for correct denary. -114	2

3 Hypertext markup language (HTML) colour codes can be represented as hexadecimal.

(b)	Denary numbers can be converted to hexadecimal.
	Convert the three denary numbers to hexadecimal.
	20
	32
	165
	[3]
	Working space

1

Data can be measured in bits.

(a)	Give the name of the data storage measurement that is equal to 8 bits.
	[1]
(b)	State how many bits there are in a kibibyte (KiB).
	[1]
(c)	Give the name of the data storage measurement that is equal to 1024 gibibytes (GiB).
	[1]
(d)	A 16-bit colour image has a resolution of 512 pixels wide by 512 pixels high.
	Calculate the file size of the image in kibibytes (KiB). Show all your working.
	Answer KiB [3]

(a)	(1) byte	1	
(b)	8192	1	
(c)	(1) Tebibyte // TiB	1	
(d)	One mark for each correct stage of working (max 2): • 512 × 512 • 262 144 * 2 // multiplied by 16 and divided by 8 • 524 288/1024 One mark for the correct answer:	3	
	512 (KiB)		

		[´	1
(b)		ee denary numbers are entered into a computer. The computer converts the numbers an es them as binary.	C
	(i)	Give the binary number that would be stored for each of the denary numbers.	
		10	
		50	
		201	
		Working space	']
	(ii)	Explain why the data is converted to binary by the computer.	••
		[2	
(c)	The	two binary integers 00110000 and 01100110 are added together.	-,
		the binary integers using binary addition and show your answer in binary. Show all you king.	ır

(d)	The denary integer –32 is stored as a two's complement integer.
	Calculate the two's complement integer that would be stored.
	Show all your working.
	[2]

(a)	Hexadecimal	1
(b)(i)	1010 110010 11001001	3
(b)(ii)	Two from: Computers use logic gates/switches that only process the values 1 and 0 // that only have two states	2
(c)	One mark for evidence of working, for example 2 carries One mark for each correct nibble (Max 2) 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0	3
(d)	One marking for evidence of working For example, flip and add One mark for correct binary 11100000	2