LOADING OF A METER RULE

1
The IGCSE class is investigating the loading of a metre rule.
Fig. 1.1 shows the apparatus.

Fig. 1.1
(a) A metre rule is attached at one end to the bench. The other end is supported by a forcemeter.

A student records in Table 1.1 the reading F on the forcemeter.
He places a 100 g mass on the rule at the 50.0 cm mark and records in the table the value of the reading F on the forcemeter. He repeats the procedure using masses of $200 \mathrm{~g}, 300 \mathrm{~g}, 400 \mathrm{~g}$ and 500 g . The forcemeter readings are shown in the table.

Write the mass values in the table.
Table 1.1

m / g	F / N
0	1.10
	1.85
	2.20
	2.95
	3.50
	4.20

(b) Plot a graph of F / N (y-axis) against m / g (x-axis).

(c) Use the graph to find the value of F when $m=375 \mathrm{~g}$. Show clearly on the graph how you obtained the result.

$$
\begin{equation*}
F= \tag{2}
\end{equation*}
$$

(d) The forcemeter shows a reading when no mass has been added to the metre rule. Assuming that the forcemeter has no zero error, suggest a reason for the reading.
\qquad
\qquad
[Total: 9]
(a) $100,200,300,400,500$
(b) Graph:

Axes labelled (label and unit) [1]
Scales suitable [1]
All plots correct to nearest $1 / 2$ small square [1]
Continuous, straight, well-judged best fit line [1]
Thin line, neat plots
(c) F correct from graph scale to $1 / 2$ small square - must see unit of N

Clear how obtained
(d) Weight/mass/force of rule owtte

Fig. 1.1 shows the apparatus.

Fig. 1.1
(a) A metre rule is attached at one end to the bench. The other end is supported by a forcemeter.

A student records in Table 1.1 the reading F on the forcemeter.
He places a 100 g mass on the rule at the 50.0 cm mark and records in the table the value of the reading F on the forcemeter. He repeats the procedure using masses of $200 \mathrm{~g}, 300 \mathrm{~g}, 400 \mathrm{~g}$ and 500 g . The forcemeter readings are shown in the table.

Write the mass values in the table.
Table 1.1

m / g	F / N
0	1.10
	1.85
	2.20
	2.95
	3.50
	4.20

(b) Plot a graph of F / N (y-axis) against m / g (x-axis).

(c) Use the graph to find the value of F when $m=375 \mathrm{~g}$. Show clearly on the graph how you obtained the result.

$$
\begin{equation*}
F= \tag{2}
\end{equation*}
$$

(d) The forcemeter shows a reading when no mass has been added to the metre rule. Assuming that the forcemeter has no zero error, suggest a reason for the reading.
\qquad
\qquad
[Total: 9]
(a) $100,200,300,400,500$
(b) Graph:

Axes labelled (label and unit)
Scales suitable
All plots correct to nearest $1 / 2$ small square
Continuous, straight, well-judged best fit line
Thin line, neat plots
(c) F correct from graph scale to $1 / 2$ small square - must see unit of N

Clear how obtained
(d) Weight/mass/force of rule owtte

