LOADING OF A METER RULE

The IGCSE class is investigating the loading of a metre rule.

Fig. 1.1 shows the apparatus.

Fig. 1.1

(a) A metre rule is attached at one end to the bench. The other end is supported by a forcemeter.

A student records in Table 1.1 the reading *F* on the forcemeter.

He places a $100 \, \mathrm{g}$ mass on the rule at the $50.0 \, \mathrm{cm}$ mark and records in the table the value of the reading F on the forcemeter. He repeats the procedure using masses of $200 \, \mathrm{g}$, $300 \, \mathrm{g}$, $400 \, \mathrm{g}$ and $500 \, \mathrm{g}$. The forcemeter readings are shown in the table.

Write the mass values in the table.

Table 1.1

m/g	F/N
0	1.10
	1.85
	2.20
	2.95
	3.50
	4.20

[1]

(b) Plot a graph of F/N (y-axis) against m/g (x-axis).

[5]

(c) Use the graph to find the value of F when $m = 375 \, \text{g}$. Show clearly on the graph how you obtained the result.

_	•				[2]
_	_				1.71

(d) The forcemeter shows a reading when no mass has been added to the metre rule. Assuming that the forcemeter has no zero error, suggest a reason for the reading.

[1]	

[Total: 9]

	Marking Scheme	
(a)	100, 200, 300, 400, 500	[1]
(b)	Graph: Axes labelled (label and unit) Scales suitable All plots correct to nearest ½ small square Continuous, straight, well-judged best fit line Thin line, neat plots	[1] [1] [1] [1]
c)	\emph{F} correct from graph scale to $1\!\!/_{\!\!2}$ small square – $\underline{\text{must see unit of N}}$ Clear how obtained	[1]
d)	Weight/mass/force of rule owtte	(1)
		[Total: 9]

The IGCSE class is investigating the loading of a metre rule.

Fig. 1.1 shows the apparatus.

Fig. 1.1

(a) A metre rule is attached at one end to the bench. The other end is supported by a forcemeter.

A student records in Table 1.1 the reading *F* on the forcemeter.

He places a $100\,\mathrm{g}$ mass on the rule at the $50.0\,\mathrm{cm}$ mark and records in the table the value of the reading F on the forcemeter. He repeats the procedure using masses of $200\,\mathrm{g}$, $300\,\mathrm{g}$, $400\,\mathrm{g}$ and $500\,\mathrm{g}$. The forcemeter readings are shown in the table.

Write the mass values in the table.

Table 1.1

m/g	F/N
0	1.10
	1.85
	2.20
	2.95
	3.50
	4.20

[1]

(b) Plot a graph of F/N (y-axis) against m/g (x-axis).

[5]

(c) Use the graph to find the value of F when $m = 375 \, \text{g}$. Show clearly on the graph how you obtained the result.

(d) The forcemeter shows a reading when no mass has been added to the metre rule. Assuming that the forcemeter has no zero error, suggest a reason for the reading.

Con '

[Total: 9]

[1] [1] [1] [1] [1] [1] tal: 9]
[1] [1] [1] [1] [1] [1]
[1] [1] [1] [1] [1]
[1] [1] [1]
[1]
[1]
tal: 9]