HOOKE'S LAW

1 A student investigated the stretching of a spring by hanging various weights from it and measuring the corresponding extensions. The results are shown below.

weight/N	0	1	2	3	4	5
extension/mm	0	21	40	51	82	103

(a) On Fig. 3.1, plot the points from these results. Do not draw a line through the points yet. [2]

Fig. 3.1

	(b) The student appears to have made an error in recording one of the results.
	Which result is this?
	[1]
(c)	Ignoring the incorrect result, draw the best straight line through the remaining points. [1]
(d)	State and explain whether this spring is obeying Hooke's Law.
()	orano anta orapiam innomor anto oprinigno occión y magnicione o cami
	[2]
	[2]
(e)	Describe how the graph might be shaped if the student continued to add several more weights to the spring.
	F.4.1
	[1]
(f)	The student estimates that if he hangs a $45\mathrm{N}$ load on the spring, the extension will be $920\mathrm{mm}$.
	Explain why this estimate may be unrealistic.
	[1]
	[1]
	[Total: 8]

5 points correctly plotted ±½ small square -1 e.e.o.o. (ignore 0,0)		B2
3 N one, however identified OR 3 rd value OR 4 th value		B1
good straight line through origin and candidate's remaining points		В1
straight line / constant gradient does obey Hooke's Law OR special case: obeys Hooke's law because force \propto extension or wtte		M1 A1 B1
graph becomes non-linear / curves / bends Ignore reference to direction of curve or bend.	B1	
will have exceeded / reached proportional / elastic limit OR permanently deformed or equiv OR staightened OR will have broken OR no longer elastic or wtte	B1	RI
	3 N one, however identified OR 3 rd value OR 4 th value good straight line through origin and candidate's remaining points straight line / constant gradient does obey Hooke's Law OR special case: obeys Hooke's law because force ∞ extension or wtte graph becomes non-linear / curves / bends Ignore reference to direction of curve or bend. will have exceeded / reached proportional / elastic limit OR permanently deformed or equiv OR staightened	3 N one, however identified OR 3 rd value OR 4 th value good straight line through origin and candidate's remaining points straight line / constant gradient does obey Hooke's Law OR special case: obeys Hooke's law because force ∞ extension or wtte graph becomes non-linear / curves / bends Ignore reference to direction of curve or bend. B1 will have exceeded / reached proportional / elastic limit OR permanently deformed or equiv OR staightened

A bucket is full of oil. The total mass of the bucket of oil is $5.4\mathrm{kg}$ and the gravitational field strength is $10\mathrm{N/kg}$.				
(a)	Cal	Calculate the total weight of the bucket of oil.		
			weight =[1]	
(b)			spring of unstretched length 20cm. The limit of sceeded and its length increases to 35cm.	
	(i)	State what is meant by the limit	t of proportionality.	
			[41]	
			[1]	
	(ii)	The oil is poured into a measur length of 25 cm.	ing tank. The empty bucket stretches the spring to a	
		Calculate		
		1 the force that stratable the	appring to a langth of QE am	
		1. the force that stretches the	e spring to a length of 25 cm,	
			force =[3]	
		2. the mass of the oil in the m	neasuring tank.	
			TO.	
			mass =[2]	
	(iii)	The volume of the oil in the method the oil.	easuring tank is 0.0045 m ³ . Calculate the density of	
			density =[2]	
(c)	Exp	plain, in terms of their molecules,	why the density of the oil is greater than that of air.	
			[1]	
			[Total: 10]	

2

(a)	54 N *Unit penalty applies		B1
(b) (i)	(the point where) proportionality between force/weight and extension/Hooke's Law stops		B1
(ii)	35 – 20 or 15 (cm) or 25 – 20 or 5 (cm) (F =) kx or 54/15 × 5 or 54/15 or 5/15 18 N *Unit penalty applies 54 – 18 or 36 or 5.4 – 1.8 3.6 kg *Unit penalty applies	ecf from 2(a) ecf from 2(a) ecf from 2(b)(ii)1. ecf from 2(b)(ii)1.	C1 C1 A1 C1 A1
(iii)	(ρ =)m/V or 3.6/0.0045 800 kg/m ³ *Unit penalty applies	ecf from 2(b)(ii)2. ecf from 2(b)(ii)2.	C1 A1
(c) air molecules further apart or oil molecules closer together			B1 [10]

^{*}Apply unit penalty once only

.....

(b) Fig. 1.1 shows a graph of the stretching force *F* acting on a spring against the extension *x* of the spring.

Fig. 1.1

(i)	State the features of the graph that show that the spring obeys Hooke's law.		
	[1]		

(ii) Calculate k, the force per unit extension of the spring.

 $k = \dots [3]$

- (iii) The limit of proportionality of the spring is reached at an extension of 50 mm.
 - Continue the graph in Fig. 1.1 to suggest how the spring behaves when the stretching force is increased to values above 125 N. [1]
- (iv) Another spring has a smaller value of k. This spring obeys Hooke's law for extensions up to $80 \, \text{mm}$.

On the grid of Fig. 1.1, draw a possible line of the variation of F with x for this spring. [1]

[Total: 7]

(a)	OR OR	ension (of spring) proportional to load/force (applied) load/force (applied) proportional to extension force = constant × extension	
		extension = constant \times force F = kx in any form with symbols explained	B1
(b)	(i)	graph is through the origin AND is a straight line/has a constant gradient	B1
	(ii)	F = kx in any form OR $(k =) F/xuse of a point anywhere on graph e.g. 50/202.5 N/mm$ OR $2500 N/m$	C1 C1 A1
	(iii)	from 50 mm extension, graph curves with no negative gradient	B1
	(iv)	straight line through origin with smaller gradient than graph shown finishing at more than 50 mm	B1
			[Total: 7

4 Fig. 3.1 shows part of the extension-load graph for a spring.

Fig. 3.1

The spring obeys Hooke's law between points A and B.

- (a) (i) On Fig. 3.1, complete the graph between A and B. [1](ii) State the name of point B.
-

(b) The average value of the load between A and B is 6.0 N.Calculate the work done in extending the spring from A to B.

work done =[2]

	(c)	The spring has an unstretched length of 4.0 cm.
An	objec	et is hung on the spring and the spring length increases from 4.0 cm to 6.0 cm.
(i)	Cal	culate the mass of the object.
		mass =[3]
		mass =[0]
(ii)	The	object is immersed in a liquid but remains suspended from the spring.
		liquid exerts an upward force on the object and the length of the spring decreases .0 cm.
	Cal	culate the upward force exerted on the object by the liquid.
		upward force =[2]
		upward force =[2]
		[Total: 9]

(a)	(i)	straight line between	A and B	B1
	(ii)	limit of proportionality	/	B1
(b)	(WI 0.1	/ _	× d OR 6.0 × 0.030 OR 18 (J)	C1 A1
(c)	(i)	(x =) 2.0 (cm) OR 6.0 $12.0 \times 2.0/3.0 \text{ OR } 4.0$ 0.80 kg OR 800 g	0 - 4.0 OR F = kx OR 4.0 (N/cm) $0 \times 2.0 \text{ OR } 8.0 \text{ (N)}$	C1 C1 A1
	(ii)	(e =) 1.0 (cm) OR 4.0 N OR	$(\Delta e = -)1.0 \text{ (cm)}$ 4.0 N	C1 A1
				[Total: 9]