ENTHALPY CHANGE CALCULATION

1 Hydrogen bromide decomposes to form hydrogen and bromine. The equation is shown.

$$
2 \mathrm{HBr}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

The bond energies are shown in the table. The reaction is endothermic.

bond	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{Br}-\mathrm{Br}$	+1
$\mathrm{H}-\mathrm{Br}$	+3
$\mathrm{H}-\mathrm{H}$	+4

What is the energy change for the reaction?
A $+263 \mathrm{~kJ} / \mathrm{mol}$
(B) $+103 \mathrm{~kJ} / \mathrm{mol}$
C $-103 \mathrm{~kJ} / \mathrm{mol}$
D $-263 \mathrm{~kJ} / \mathrm{mol}$

2 Hydrogen peroxide, $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$, decomposes to form water and oxygen.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{O}-\mathrm{H}$	+460
$\mathrm{O}-\mathrm{O}$	+150
$\mathrm{O}=\mathrm{O}$	+496

What is the energy change for the reaction?
A $-346 \mathrm{~kJ} / \mathrm{mol}$
(B) $-196 \mathrm{~kJ} / \mathrm{mol}$
C $\quad+196 \mathrm{~kJ} / \mathrm{mol}$
D $+346 \mathrm{~kJ} / \mathrm{mol}$

3 The equation for the reaction between hydrogen and chlorine is shown.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

The reaction is exothermic.
The bond energies are shown in the table.

bond	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{Cl}-\mathrm{Cl}$	+2
$\mathrm{H}-\mathrm{Cl}$	+4
$\mathrm{H}-\mathrm{H}$	+4

What is the energy change for the reaction?
A $-1536 \mathrm{~kJ} / \mathrm{mol}$
VB $-184 \mathrm{~kJ} / \mathrm{mol}$
C $+184 \mathrm{~kJ} / \mathrm{mol}$
D $+246 \mathrm{~kJ} / \mathrm{mol}$

4 Ethene reacts with hydrogen. The equation is shown.

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{C}-\mathrm{C}$	+350
$\mathrm{C}=\mathrm{C}$	+610
$\mathrm{C}-\mathrm{H}$	+410
$\mathrm{H}-\mathrm{H}$	+436

What is the energy change for the reaction?
A $-560 \mathrm{~kJ} / \mathrm{mol}$
『 ${ }^{5}-124 \mathrm{~kJ} / \mathrm{mol}$
C $\quad+486 \mathrm{~kJ} / \mathrm{mol}$
D $+5496 \mathrm{~kJ} / \mathrm{mol}$

5 Nitrogen reacts with hydrogen to produce ammonia.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

The reaction is exothermic. The bond energies are shown in the table.

bond	bond energy in $k J / m o l$
$\mathrm{~N} \equiv \mathrm{~N}$	945
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{~N}-\mathrm{H}$	390

What is the energy change for this reaction?
A $-1473 \mathrm{~kJ} / \mathrm{mol}$
B $-87 \mathrm{~kJ} / \mathrm{mol}$
C $87 \mathrm{~kJ} / \mathrm{mol}$
D $1473 \mathrm{~kJ} / \mathrm{mol}$

6 The compound hydrazine is used as a rocket fuel. It has the structural formula shown.

One of the reactions of hydrazine is shown. This reaction is exothermic.

$$
\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2}
$$

The bond energies are shown in the table.

	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{H}$	+
$\mathrm{N}-\mathrm{H}$	+
$\mathrm{N}-\mathrm{N}$	+
$\mathrm{N} \equiv \mathrm{N}$	+

What is the energy change for this reaction?
A $-339 \mathrm{~kJ} / \mathrm{mol}$
(B' $-97 \mathrm{~kJ} / \mathrm{mol}$
C $\quad+97 \mathrm{~kJ} / \mathrm{mol}$
D $+339 \mathrm{~kJ} / \mathrm{mol}$

7 Some bond energies are shown in the table.

bond	bond energy inkJ/mol
$\mathrm{H}-\mathrm{H}$	+
$\mathrm{O}=\mathrm{O}$	+
$\mathrm{H}-\mathrm{O}$	+

Hydrogen reacts with oxygen. The reaction is exothermic.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the energy change for the reaction?
A $-3208 \mathrm{~kJ} / \mathrm{mol}$
B $-908 \mathrm{~kJ} / \mathrm{mol}$
f) $-472 \mathrm{~kJ} / \mathrm{mol}$

D $-448 \mathrm{~kJ} / \mathrm{mol}$

8 The energy level diagram for the combustion of methane is shown.

Which row gives the equation and energy change for this reaction?

	equation	energy change in $\mathrm{kJ} / \mathrm{mol}$
A	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	+891
\boldsymbol{V}^{\prime}	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-891
C	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	+891
D	$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-891

9 The equation for the complete combustion of methane gas is shown.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Bond energies are shown.

bond	bond energy in kJ/mol
$\mathrm{C}-\mathrm{H}$	412
$\mathrm{H}-\mathrm{O}$	463
$\mathrm{C}=\mathrm{O}$	743
$\mathrm{O}=\mathrm{O}$	498

What is the overall energy change, in $\mathrm{kJ} / \mathrm{mol}$, for the above reaction?
A -1192
-694
C +694
D +1192

10 Methane burns in excess oxygen.
The equation is shown.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Bond energies are shown.

bond	bond energy $/ \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{C}-\mathrm{H}$	410
$\mathrm{O}=\mathrm{O}$	496
$\mathrm{O}-\mathrm{H}$	460

What is the energy change for the reaction?

$$
(4 \times 410+2 \times 496)-(2 \times 805+4 \times 460)
$$

B $(2 \times 805+2 \times 460)-(410+2 \times 496)$
C $(410+2 \times 496)-(805+2 \times 460)$
D $(410+496)-(80 \ddagger V+N 46 \Theta)^{m a r t e x a m r e s o u r c e s . c o m ~}$

Ethene gas, $\mathrm{C}_{2} \mathrm{H}_{4}$, is completely burned in excess oxygen to form carbon dioxide and water. The equation for this exothermic reaction is shown.

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The table shows the bond energies involved in the reaction.

bond	bond energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}=\mathrm{C}$	614
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{O}=\mathrm{O}$	495
$\mathrm{C}=\mathrm{O}$	799
$\mathrm{O}-\mathrm{H}$	467

What is the total energy change in this reaction?
A $-954 \mathrm{~kJ} / \mathrm{mol}$
B $-1010 \mathrm{~kJ} / \mathrm{mol}$
c) $-1313 \mathrm{~kJ} / \mathrm{mol}$

D $-1369 \mathrm{~kJ} / \mathrm{mol}$

