ENTHALPY CHANGE CALCULATION

1 Hydrogen bromide decomposes to form hydrogen and bromine. The equation is shown.

$$2HBr(g) \rightarrow H_2(g) + Br_2(g)$$

The bond energies are shown in the table. The reaction is endothermic.

bond	bond energy in kJ/mol
Br–Br	+1
H–Br	+3
H–H	+4

What is the energy change for the reaction?

Α	+263 kJ / mol	P	+103 kJ / mol	С	–103 kJ / mol	D	–263 kJ / mol
---	---------------	---	---------------	---	---------------	---	---------------

2 Hydrogen peroxide, H–O–O–H, decomposes to form water and oxygen.

$$2H_2O_2(g) \rightarrow 2H_2O(g) + O_2(g)$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in kJ/mol
O–H	+460
0–0	+150
O=O	+496

What is the energy change for the reaction?

A –346 kJ/mol **B** –196 kJ/mol **C** +196 kJ/mol **D** +346 kJ/mol

3 The equation for the reaction between hydrogen and chlorine is shown.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

The reaction is exothermic.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
Cl–Cl	+2
H–Cl	+4
H–H	+4

What is the energy change for the reaction?

- A -1536 kJ/mol
- √≝ –184 kJ / mol
- **C** +184 kJ/mol
- **D** +246 kJ/mol
- 4 Ethene reacts with hydrogen. The equation is shown.

$$CH_2=CH_2 + H_2 \rightarrow C_2H_6$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in kJ/mol
C–C	+350
C=C	+610
C–H	+410
H–H	+436

What is the energy change for the reaction?

A –560 kJ/mol √B –124 kJ/mol C +486 kJ/mol D +5496 kJ/mol

5 Nitrogen reacts with hydrogen to produce ammonia.

$$N_2 + 3H_2 \rightarrow 2NH_3$$

The reaction is exothermic. The bond energies are shown in the table.

bond	bond energy in kJ/mol
N≡N	945
H–H	436
N–H	390

What is the energy change for this reaction?

- A –1473 kJ/mol
- **∕B** –87 kJ/mol

C 87 kJ/mol

- **D** 1473 kJ/mol
- 6 The compound hydrazine is used as a rocket fuel. It has the structural formula shown.

One of the reactions of hydrazine is shown. This reaction is exothermic.

$$N_2H_4 \ \rightarrow \ N_2 \ + \ 2H_2$$

The bond energies are shown in the table.

	bond energy in kJ/mol
H–H	+
N–H	+
N–N	+
N≡N	+

What is the energy change for this reaction?

A –339 kJ/mol ₽ –97 kJ/mol C +97 kJ/mol D +339 kJ/mol

7 Some bond energies are shown in the table.

bond	bond energy in kJ/mol
H–H	+
O=O	+
H–O	+

Hydrogen reacts with oxygen. The reaction is exothermic.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

What is the energy change for the reaction?

- A -3208 kJ/mol
- **B** -908 kJ/mol
- ダ -472 kJ/mol
- **D** -448 kJ/mol
- 8 The energy level diagram for the combustion of methane is shown.

energy
$$CH_4(g) + 2O_2(g)$$

energy change $CO_2(g) + 2H_2O(g)$

Which row gives the equation and energy change for this reaction?

	equation	energy change in kJ/mol
Α	$CH_4(g) \ + \ 2O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2H_2O(g)$	+891
F	$CH_4(g)$ + $2O_2(g) \rightarrow CO_2(g)$ + $2H_2O(g)$	-891
С	$CH_4(g) \ + \ 2O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2H_2O(I)$	+891
D	$CH_4(g)$ + $2O_2(g) \rightarrow CO_2(g)$ + $2H_2O(I)$	-891

⁹ The equation for the complete combustion of methane gas is shown.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Bond energies are shown.

bond	bond energy in kJ/mol
C–H	412
H–O	463
C=O	743
O=0	498

What is the overall energy change, in kJ/mol, for the above reaction?

- A −1192 −694 C +694 D +1192
- 10 Methane burns in excess oxygen.

The equation is shown.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Bond energies are shown.

bond	bond energy /kJ mol ⁻¹
C=O	805
C–H	410
O=O	496
O–H	460

What is the energy change for the reaction?

$$(4 \times 410 + 2 \times 496) - (2 \times 805 + 4 \times 460)$$

B
$$(2 \times 805 + 2 \times 460) - (410 + 2 \times 496)$$

C $(410 + 2 \times 496) - (805 + 2 \times 460)$

D (410 + 496) - (80 WWW martexamresources.com

Ethene gas, C₂H₄, is completely burned in excess oxygen to form carbon dioxide and water.
The equation for this exothermic reaction is shown.

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

The table shows the bond energies involved in the reaction.

bond	bond energy (kJ/mol)
C=C	614
C–H	413
O=O	495
C=O	799
O–H	467

What is the total energy change in this reaction?

- **A** _954 kJ/mol
- **B** –1010 kJ/mol
- **/** –1313 kJ/mol
- **D** –1369kJ/mol