SMART EXAM RESOURCES9702 PHYSICS TOPIC QUESTIONS ## **TOPIC: PHYSICAL QUANTITIES AND UNITS** **SUB-TOPIC: SI UNITS** **SUB-SUB-TOPIC: CONVERT BETWEEN UNITS** **SET-3-QP-MS** Determine the SI base units of stress. Show your working. | base u | nits |
[2] | • | |--------|------|---------|---| | | |
_ | | | (a) | (stress =) force / area or kg m s ⁻² /m ² | B1 | |-----|---|----| | | $= kg m^{-1} s^{-2}$ | A1 | | 2 | (a) | State two SI base units other than kilogram, metre and second. | | |---|-----|--|-----| | | | 1 | | | | | 2 | | | | | | [1] | | | (b) | Determine the SI base units of resistivity. | base units[3] | (a) | kelvin, mole, ampere, candela any two | B | |-----|---|------| | (b) | use of resistivity = RA/l and $V = IR$ (to give $\rho = VA/It$) | C1 | | | units of V: (work done / charge) kg m ² s ⁻² (A s) ⁻¹ | C1 | | | units of resistivity: $(kg m^2 s^{-3} A^{-1} A^{-1} m)$
= $kg m^3 s^{-3} A^{-2}$ | A1 | | | or | | | | use of $R = \rho L / A$ and $P = I^2 R$ (gives $\rho = PA / I^2 L$) | (C1) | | | units of P: kg m ² s ⁻³ | (C1) | | | units of resistivity: $(kg m^2 s^{-3} \times m^2) / (A^2 \times m)$
= $kg m^3 s^{-3} A^{-2}$ | (A1) | | | | | | 3 | State the SI base units of force. | | |---|-----------------------------------|-----| | | | [1] | |
The state of the s | | 1 | |--|----|---| | kgms ⁻² | A1 | | | | | | The force *F* between two point charges is given by $$F = \frac{Q_1 Q_2}{4\pi r^2 \varepsilon}$$ where Q_1 and Q_2 are the charges, r is the distance between the charges, ε is a constant that depends on the medium between the charges. Use the above expression to determine the base units of ε . | base units [2 | | | |----------------|---------------------------|-----| | naed linite 12 | The second second file of | FO. | | | nace linite | ーワ | ## Mark Scheme: | units for Q: As and for r: m | | |---|--| | units for $\varepsilon = (As \times As)/(kgms^{-2} \times m^2)$ | | | $= A^2 kg^{-1}m^{-3}s^4$ | | | _ | (0) | The dres force F | acting or | a a anhara | maying through | a fluid in aire | en by the expression | |----------|-----|------------------|------------------------|-------------|----------------|-----------------|----------------------| | 7 | (a) | The drag lorce r | _n acting or | i a spriere | inoving unough | a liulu is give | on by the expression | | | ` ' | | | | 0 | 9 | , , | $$F_{\rm D} = K \rho v^2$$ Determine the SI base units of K. | base units | | .[3] |] | |------------|--|------|---| |------------|--|------|---| | units of F: kgms ⁻² | C1 | |--|----| | units of ρ : kgm ⁻³ and units of ν : ms ⁻¹ | C1 | | units of K : kg ms ⁻² /[kg m ⁻³ (ms ⁻¹) ²]
= m ² | A1 | | | | | 6 | a Sho | ow that the SI base units of power are kg m ² s ⁻³ . | | |---|-------|--|------| | | | | F41 | | | | | [1] | | | (b) | All bodies radiate energy. The power P radiated by a body is given by | | | | | $P = kAT^4$ | | | | | where T is the thermodynamic temperature of the body, A is the surface area of the body and k is a constant. | | | | | (i) Determine the SI base units of <i>k</i> . | | | | | | | | | | | | | | | base units | .[2] | | | | | | | (a) | Correct substitution of base units of all quantities into any correct equation for power. | A1 | |--------|---|----| | | Examples: | | | | $(P = E/t \text{ or } W/t \text{ gives}) \text{ kg m}^2 \text{s}^{-2}/\text{s} = \text{kg m}^2 \text{s}^{-3}$ | | | | $(P = Fs/t \text{ or } mgh/t \text{ gives}) \text{ kg m s}^{-2}\text{m/s} = \text{kg m}^2\text{s}^{-3}$ | | | | $(P = \frac{1}{2}mv^2/t \text{ gives}) \text{ kg (m s}^{-1})^2/\text{ s} = \text{kg m}^2\text{s}^{-3}$ | | | | $(P = Fv \text{ gives}) \text{ kg m s}^{-2} \text{ m s}^{-1} = \text{kg m}^2 \text{s}^{-3}$ | | | | $(P = VI \text{ gives}) \text{ kg m}^2 \text{ s}^{-2} \text{ A}^{-1} \text{ s}^{-1} \text{ A} = \text{kg m}^2 \text{ s}^{-3}$ | | | (b)(i) | units of A: m ² and units of T: K | C1 | | | units of K : kg m ² s ⁻³ / m ² K ⁴
= kg s ⁻³ K ⁻⁴ | A1 |