SMART EXAM RESOURCES9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS

SUB-TOPIC: SI UNITS

SUB-SUB-TOPIC: CONVERT BETWEEN UNITS

SET-3-QP-MS

Determine the SI base units of stress. Show your working.

base u	nits	 [2]	•
		 _	

(a)	(stress =) force / area or kg m s ⁻² /m ²	B1
	$= kg m^{-1} s^{-2}$	A1

2	(a)	State two SI base units other than kilogram, metre and second.	
		1	
		2	
			[1]
	(b)	Determine the SI base units of resistivity.	

base units[3]

(a)	kelvin, mole, ampere, candela any two	B
(b)	use of resistivity = RA/l and $V = IR$ (to give $\rho = VA/It$)	C1
	units of V: (work done / charge) kg m ² s ⁻² (A s) ⁻¹	C1
	units of resistivity: $(kg m^2 s^{-3} A^{-1} A^{-1} m)$ = $kg m^3 s^{-3} A^{-2}$	A1
	or	
	use of $R = \rho L / A$ and $P = I^2 R$ (gives $\rho = PA / I^2 L$)	(C1)
	units of P: kg m ² s ⁻³	(C1)
	units of resistivity: $(kg m^2 s^{-3} \times m^2) / (A^2 \times m)$ = $kg m^3 s^{-3} A^{-2}$	(A1)

3	State the SI base units of force.	
		[1]

 The state of the s		1
kgms ⁻²	A1	

The force *F* between two point charges is given by

$$F = \frac{Q_1 Q_2}{4\pi r^2 \varepsilon}$$

where Q_1 and Q_2 are the charges, r is the distance between the charges, ε is a constant that depends on the medium between the charges.

Use the above expression to determine the base units of ε .

base units [2		
naed linite 12	The second second file of	FO.
	nace linite	ーワ

Mark Scheme:

units for Q: As and for r: m	
units for $\varepsilon = (As \times As)/(kgms^{-2} \times m^2)$	
$= A^2 kg^{-1}m^{-3}s^4$	

_	(0)	The dres force F	acting or	a a anhara	maying through	a fluid in aire	en by the expression
7	(a)	The drag lorce r	_n acting or	i a spriere	inoving unough	a liulu is give	on by the expression
	` '				0	9	, ,

$$F_{\rm D} = K \rho v^2$$

Determine the SI base units of K.

base units		.[3]]
------------	--	------	---

units of F: kgms ⁻²	C1
units of ρ : kgm ⁻³ and units of ν : ms ⁻¹	C1
units of K : kg ms ⁻² /[kg m ⁻³ (ms ⁻¹) ²] = m ²	A1

6	a Sho	ow that the SI base units of power are kg m ² s ⁻³ .	
			F41
			[1]
	(b)	All bodies radiate energy. The power P radiated by a body is given by	
		$P = kAT^4$	
		where T is the thermodynamic temperature of the body, A is the surface area of the body and k is a constant.	
		(i) Determine the SI base units of <i>k</i> .	
		base units	.[2]

(a)	Correct substitution of base units of all quantities into any correct equation for power.	A1
	Examples:	
	$(P = E/t \text{ or } W/t \text{ gives}) \text{ kg m}^2 \text{s}^{-2}/\text{s} = \text{kg m}^2 \text{s}^{-3}$	
	$(P = Fs/t \text{ or } mgh/t \text{ gives}) \text{ kg m s}^{-2}\text{m/s} = \text{kg m}^2\text{s}^{-3}$	
	$(P = \frac{1}{2}mv^2/t \text{ gives}) \text{ kg (m s}^{-1})^2/\text{ s} = \text{kg m}^2\text{s}^{-3}$	
	$(P = Fv \text{ gives}) \text{ kg m s}^{-2} \text{ m s}^{-1} = \text{kg m}^2 \text{s}^{-3}$	
	$(P = VI \text{ gives}) \text{ kg m}^2 \text{ s}^{-2} \text{ A}^{-1} \text{ s}^{-1} \text{ A} = \text{kg m}^2 \text{ s}^{-3}$	
(b)(i)	units of A: m ² and units of T: K	C1
	units of K : kg m ² s ⁻³ / m ² K ⁴ = kg s ⁻³ K ⁻⁴	A1