FUNCTIONS-SET-2-QP-MS

Answer only **one** of the following two alternatives.

EITHER

A f	unction f is such that $f(x) = \ln(5x - 10)$), for $x > 2$.					
(i)	State the range of f.				[1]		
(ii)	Find $f^{-1}(x)$.						[3]
(iii)	State the range of f^{-1} .						[1]
(iv)	Solve $f(x) = 0$.						[2]
A f	unction g is such that $g(x) = 2x - \ln 2$,	for $x \in \mathbb{R}$.					
(v)	Solve $gf(x) = f(x^2)$.						[5]
OR							
A f	unction f is such that $f(x) = 4e^{-x} + 2$, for	or $x \in \mathbb{R}$.					
(i)	State the range of f.						[1] [2]
(ii)	Solve $f(x) = 26$.						
(iii)	Find $f^{-1}(x)$.						[3]
(iv)	State the domain of f^{-1} .						[1]
A f	unction g is such that $g(x) = 2e^x - 4$, for	or $x \in \mathbb{R}$.					
(v)	Using the substitution $t = e^x$ or other	wise, solve g((x) = f	(x).			[5]
Start you	ur answer to Question 12 here.						
Indicate	which question you are answering.	EITHER					
		OR					
•••••				•••••	•••••		
				•••••		•••••	
				•••••			
				•••••			
			•••••	•••••			

Continue your answer to Question 12 here.

EITHER (i) ℝ or equivalent	B1	
(ii) $e^y = 5x - 10$, $\frac{e^y + 10}{5} = x$	M1	M1 rearrangement to x in terms of y
$f^{-1}(x) = \frac{e^x + 10}{5}$	DM1 A1	DM1 for interchange of x and y A1 for correct form
(iii) $f^{-1}(x) > 2$ or $y > 2$	B1	
(iv) $1 = 5x - 10$ x = 2.2	B1 B1	
(v) $g(\ln(5x-10)) = \ln(5x^2-10)$ $2\ln(5x-10) - \ln 2 = \ln(5x^2-10)$ $25x^2 - 100x - 100 = 10x^2 - 20$ $3x^2 - 20x + 24 = 0$, leading to x = 5.10 only	M1 M1 A1 M1	M1 for correct order gf M1 for dealing with x^2 correctly A1 correct quadratic—allow unsimplified M1 for correct attempt at solution of a 3 term quadratic A1 for valid solution only

OR (i)	f(x) > 2	B1	
(ii)	$26 = 4e^{-x} + 2$	В1	
	$6 = e^{-x}$ so $x = -\ln 6$, $\ln \frac{1}{6}$ or -1.79	В1	
(iii)	$\frac{(y-2)}{4} = e^{-x}$, $\ln \frac{(y-2)}{4} = -x$	M1	M1 rearrangement to x in terms of y
	$f^{-1}(x) = \ln \frac{4}{x-2}$ or $-\ln \frac{x-2}{4}$	M1 A1	M1 for interchange of x and y A1 for correct form
(iv)	$f^{-1}(x)$ or $y > 2$	B1	
(v)	$2e^{x} - 4 = 4e^{-x} + 2$ $(2t - 4 = 4t^{-1} + 2)$	M1	M1 for attempt to deal with t^{-1} or e^{-x}
	(2l-4-4l+2)	A1	A1 for correct quadratic equation
	$e^{2x} - 3e^x - 2 = 0$ $(t^2 - 3t - 2 = 0)$ $e^x = 3.56$ so $x = 1.27$	M1 M1 A1 [12]	M1 for solution of quadratic M1 for correct attempt to obtain <i>x</i> A1 for 1 solution only

- **2** A function g is such that $g(x) = \frac{1}{2x-1}$ for $1 \le x \le 3$.
 - (i) Find the range of g. [1]

(ii) Find $g^{-1}(x)$. [2]

- (iii) Write down the domain of $g^{-1}(x)$. [1]
- (iv) Solve $g^2(x) = 3$. [3]

(i) $0.2 \le y \le 1$	B1	Must be using correct notation
	[1]	
(ii) $g^{-1}(x) = \frac{1+x}{2x}$	M1	M1 for a valid method to find inverse
2x	A1	A1 must have correct notation
(11) 0.2	$\sqrt{B1}$ [2]	Follow through on their (3)
(iii) $0.2 \le x \le 1$	[1]	Follow through on their (i)
(iv) $g^2 = \frac{1}{(1 + 1)^2} = 3$	M1	M1 for correct attempt to find g^2
$2\left(\frac{1}{2}\right)-1$	DM1	DM1 for equating to 3 and attempt to
(2x-1)		solve.
$\frac{2x-1}{3-2x} = 3 \text{ leading to } x = 1.25$	A1	
3-2x	[3]	

- 3 (a) A function f is such that $f(x) = 3x^2 1$ for $-10 \le x \le 8$.
 - (i) Find the range of f. [3]

(ii) Write down a suitable domain for f for which f^{-1} exists. [1]

(b) Functions g and h are defined by

$$g(x) = 4e^x - 2 \text{ for } x \in \mathbb{R},$$

$$h(x) = \ln 5x \text{ for } x > 0.$$

(i) Find
$$g^{-1}(x)$$
. [2]

(ii) Solve
$$gh(x) = 18$$
. [3]

(a) (i)	f(-10) = 299, $f(8) = 191Min point at (0, -1) or when y = -1∴ range -1 \le y \le 299$	M1 B1 A1 [3]	M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram Must have \leq for A1, do not allow x
(ii)	$x \ge 0$ or equivalent	B1 [1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.
(b) (i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$	M1	M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of <i>y</i> .
	or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1 [2]	A1 must be in terms of x
(ii)	gh(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1	M1 for correct order A1 for correct expression $4e^{\ln 5x} - 2$
	$20x - 2 = 18, \ x = 1$	A1 [3	A1 for correct solution from correct working
	Or $h(x) = g^{-1}(18)$ 1n5x = 1n5	M1 A1	M1 for correct order A1 for correct equation
	leading to $x = 1$	A1	A1 for correct solution from correct working

4

The function f is defined by

$$f(x) = (2x + 1)^2 - 3$$
 for $x \ge -\frac{1}{2}$.

Find

- (i) the range of f, [1]
- (ii) an expression for $f^{-1}(x)$. [3]

The function g is defined by

$$g(x) = \frac{3}{1+x}$$
 for $x > -1$.

(iii) Find the value of x for which fg(x) = 13.

[4]

(i) f ≥ -3	B1 [1]	
(ii) $f^{-1} = \frac{\sqrt{x+3}-1}{2}$	M1 M1 A1 [3]	M1 for correct order of operations M1 for 'interchange' of x and y
(iii) $\left(2\left(\frac{3}{1+x}\right)+1\right)^2-3=13$	M1	M1 for correct order
$\left(\frac{7+x}{1+x}\right)^2 = 16$ $x = 1$	A1 M1 B1 [4]	A1 for correct simplification M1 for solution B1 for one solution only

The function f is given by $f: x \mapsto 5 - 3e^{\frac{1}{2}x}, x \in \mathbb{R}$.

- (i) State the range of f. [1]
- (ii) Solve the equation f(x) = 0, giving your answer correct to two decimal places. [2]
- (iii) Sketch the graph of y = f(x), showing on your diagram the coordinates of the points of intersection with the axes. [2]
- (iv) Find an expression for f^{-1} in terms of x. [3]

$f(x) = 5 - 3e^{\frac{y}{2}x}$		
(i) Range is <5	B1	Allow ≤ or <
(ii) $5-3e^{\frac{1}{2}x} = 0 \rightarrow e^{\frac{1}{2}x} = \frac{5}{3}$ Logs or calculator $\rightarrow x = 1.02$	M1A1	Normally 2,0 but if working shown, can get M1 if appropriate
(iii) (1.02, 0) and (0, 2)	B1 B1√	Shape in 1 st quadrant. Both shown or implied by statement.
(iv) $e^{\frac{1}{2}x} = (5 - y) \div 3$ $x/2 = \ln[(5-y)/3]$ $f^{1}(x) = 2\ln[(5-x)/3]$	M1 M1 A1	Reasonable attempt $e^{\frac{1}{2}x}$ as the subject. Using logs. All ok, including x, y interchanged.
	[8]	

A function f is defined by $f: x \mapsto |2x-3|-4$, for $-2 \le x \le 3$.

- (i) Sketch the graph of y = f(x). [2]
- (ii) State the range of f. [2]
- (iii) Solve the equation f(x) = -2. [3]

A function g is defined by g: $x \mapsto |2x-3|-4$, for $-2 \le x \le k$.

- (iv) State the largest value of k for which g has an inverse. [1]
- (v) Given that g has an inverse, express g in the form $g: x \mapsto ax + b$, where a and b are constants. [2]

T	VIARRING SCITEVIE.			
	f: $x \rightarrow 2x-3-4$ $-2 \le x \le 3$ (i)	B2,1 [2]	Must be "V" shaped to get any marks. Must cross -ve x and -ve y axes. Endpoint -ve y. Start point + ve y.	
	(ii) Range of f -4 to 3	B1 B1 [2]	Independent of graph4 on own ok. 3 on its own.	
	(iii) $2x - 3 = 2 \rightarrow x = 2\frac{1}{2}$ or 2.5 $2x - 3 = -2 \rightarrow x = \frac{1}{2}$ or 0.5	B1 M1A1 [3]	Co – answer only Correct method of other solution. co	
	(iv) Largest value is x value at "V" = 1½	B1√ [1]	From his graph – or any other method	
	(v) Equation of left hand part of "V". $m = -2 \rightarrow -2x - 1$.	M1 A1 [2]	Realises that one line only is needed + correct method ($y=mx+c$ etc). Or $-(2x-3)-4=-2x-1$ Doesn't need a or b implicitly mentioned	
			4,	