Calculate energy of a reaction using

bond energies

- Bond energy (Bond enthaly) is the amount of energy required to break 1 mole of a particular covalent bond in the gaseous state in to gaseous atoms (under standard thermodynamic conditions). It is a measure of the strength of a bond.
- Symbol of bond energy is E.

Example:

E(H-H)=+436kJ/mol. It means that 436kJ of energy are needed to break the bonds in 1 mole of hydrogen molecules.

• Bond energies are always +ve. This is because they refer to the bonds being broken.

Application based questions showing you how to calculate energy changes in a reaction.

Question: Calculate the energy in the reaction:

Bond empsay values is	$O_2(9) \rightarrow 2H_2O(9)$
Bond energy values is	Kalmol
0=0 +498	selection to
3200000 St. W. Santh	in sydsin
Bonds broken	Bonds former
(Endothernic)	
2H-H=2(436)=87	
	8KJ 4×464
	7KJ = 1856K
. Adding both ener	gy values we get
. Adding both even + 1370KJ - 18561	gy values we get kI = -486KI
Adding both ener + 1370KJ - 18561 Coverau energy cho	A BAGLET ALL
"c Overall energy cho	A BAGLET ALL
o Overall energy cho	ange is exothern
2H2 + 02 H-H + 0=0	ange is exothern
Overall energy cho	ange is exothern → 2H2O H H H
2H2 + 02 H-H + 0=0	ange is exothern