FUNCTIONS-SET-6-QP-MS

1 (a)
$$f(x) = 4 \ln(2x - 1)$$

(i) Write down the largest possible domain for the function f.

[1]

(ii) Find
$$f^{-1}(x)$$
 and its domain.

[3]

(b)
$$g(x) = x+5 \text{ for } x \in \mathbb{R}$$

$$h(x) = \sqrt{2x-3} \text{ for } x \ge \frac{3}{2}$$

Solve gh(x) = 7.

(a)(i)	$x > \frac{1}{2}$	B1	Must be using x
(a)(ii)	$x = 4\ln(2y - 1)$ $e^{\frac{x}{4}} = 2y - 1$ $y = \frac{1}{2} \left(1 + e^{\frac{x}{4}} \right)$	MI	For full method for inverse using correct order of operations
	$f^{-1}(x) = \frac{1}{2} \left(1 + e^{\frac{x}{4}} \right) \text{ or } f^{-1}(x) = \frac{1}{2} \left(1 + \sqrt[4]{e^x} \right)$	A1	Must be using correct notation
	$x \in \mathbb{R}$	B1	
(b)	$\sqrt{2x-3}+5=7$	M1	For correct order
	$x = \frac{2^2 + 3}{2}$	M1	Dep on previous M mark, for obtaining x by simplifying and solving using correct order of operations, including squaring
	$x = \frac{7}{2}$ or 3.5	A1	20

$$f: x \mapsto e^{3x} \text{ for } x \in \mathbb{R}$$

 $g: x \mapsto 2x^2 + 1 \text{ for } x \ge 0$

(i) Write down the range of g.

(ii) Show that $f^{-1}g(\sqrt{62}) = \ln 5$.

[3]

(iii) Solve f'(x) = 6g''(x), giving your answer in the form $\ln a$, where a is an integer.

(iv) On the axes below, sketch the graph of y = g and the graph of $y = g^{-1}$, showing the points where the graphs meet the coordinate axes.

(i)	$g \ge 1$	B 1	Must be using correct notation
(ii)	$g\left(\sqrt{62}\right) = 125$	B1	
	$f^{-1}(x) = \frac{1}{3} \ln x$	B1	
	$\frac{1}{3}\ln 125 = \ln 5$	B1	For correct order and manipulation to obtain the given answer, need to see $\frac{1}{3}\ln 125$
(iii)	$3e^{3x} = 24$	M1	For dealing with derivatives correctly
	$x = \frac{1}{3} \ln 8$	A1	6.9
	$x = \ln 2$	A1	-0
(iv)		В3	B1 for correct g with intercept B1 for $y = x$ and/or implication of symmetry B1 for correct g^{-1} with intercept

$$f(x) = 3 + e^x \quad \text{ for } x \in \mathbb{R}$$

$$g(x) = 9x - 5 \quad \text{for } x \in \mathbb{R}$$

(b) Find the exact solution of
$$f^{-1}(x) = g'(x)$$
.

(c) Find the solution of
$$g^2(x) = 112$$
.

(a)	f > 3	B1	Allow y but not x
	$g \in \mathbb{R}$	B1	Allow y but not x
.(b)	ln(x-3)	B1	
	$\ln(x-3) = 9$ $x-3 = e^9$	M1	For attempt to equate to 9 and solve, must get rid of ln
	$x = e^9 + 3$	A1	
(c)	9(9x-5)-5=112	M1	For correct order of operation
	x = 2	A1	G.

Functions f and g are defined, for x > 0, by

$$f(x) = \ln x,$$

$$g(x) = 2x^2 + 3.$$

(i) Write down the range of f.

[1]

(ii) Write down the range of g.

[1]

(iii) Find the exact value of $f^{-1}g(4)$.

[2]

(iv) Find $g^{-1}(x)$ and state its domain.

(i)	$y \in \mathbb{R}$ oe	B1	Must have correct notation i.e. no use of x
(ii)	y > 3 oe	B1	Must have correct notation i.e. no use of x
(iii)	$f^{-1}(x) = e^x \text{ or } g(4) = 35$	B1	First B1 may be implied by correct answer or by use of 35
	$f^{-1}g(4) = e^{35}$	B1	
(iv)	$\frac{y-3}{2} = x^2 \text{ or } \frac{x-3}{2} = y^2$	M1	valid attempt to obtain the inverse
	$g^{-1}(x) = \sqrt{\frac{x-3}{2}}$	A1	correct form, must be $g^{-1}(x) = or$ $y =$
	Domain $x > 3$	B1	Must have correct notation

5

(a)
$$f() = -x$$
 $x \le \frac{\pi}{2}$. $\cos 2$ $\sin 6$ for 0

(i) Write down the range of f.

[2]

(ii) Find the exact value of
$$f^{-1}(2.5)$$
.

(b) $g(x) = 3 - x^2$ for $x \in \mathbb{R}$.

Find the exact solutions of $g^2(x) = -6$. [4]

(a)(i)		B1	For critical values	
	$2 \leqslant f \leqslant 4$	B1	Dep For correct inequality and notation	
(a)(ii)	$x = 3\cos y$ $\cos 2y = 0.5$	M1	For attempt to find f^{-1} and equate to 0.5	
	$2y = \frac{\pi}{3}$	M1	Dep For correct attempt to solve, dealing with the double angle	
	$y = \frac{\pi}{6}$	A1		
(b)	$g^{2}(x) = g(3-x^{2})$ $= 3 - (3-x^{2})^{2}$	M1	For correct attempt at g ² , allow unsimplified	
	$-6 + 6x^2 - x^4 = -6$ $6x^2 - x^4 = 0$	M1	Dep for equating to -6 and attempt to solve to obtain a non-zero root	
	x = 0	B1		
	$x = \pm \sqrt{6}$	A1	0.2	

$$f(x) = 5 + \sin \frac{x}{4}$$
 for $0 \le x \le 2\pi$ radians

$$g(x) = x - \frac{\pi}{3}$$
 for $x \in \mathbb{R}$

(i) Write down the range of f(x).

[2]

(ii) Find $f^{-1}(x)$ and write down its range.

[3]

(iii) Solve 2fg(x) = 11.

[4]

(i)	$5 \le f(x) \le 6 \text{ or } [5,6] \text{ oe}$	В2	B1 for $5 \le f(x) \le p \ (p > 5)$ or for $q \le f(x) \le 6 \ (q < 6)$
(ii)	$x = \sin\frac{y}{4} + 5$	M1	complete valid attempt to obtain the inverse with operations in correct order.
	$y = 4\sin^{-1}(x-5)$	A1	
	Range $0 \leqslant y \leqslant 2\pi$	B1	
(iii)	$2\left(\sin\frac{\left(x-\frac{\pi}{3}\right)}{4}+5\right) (=11)$	В1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} + 5$
	$\sin\frac{\left(x-\frac{\pi}{3}\right)}{4} = \frac{1}{2}$	M1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} = k$
	$x = 4\sin^{-1}\left(\frac{1}{2}\right) + \frac{\pi}{3} \text{ oe}$	M1	Dep for use of sin ⁻¹ and correct order of operations to obtain x. Allow one +/- or ×/ ÷ sign error
	$x = \pi$ or 3.14	A1	$x = \pi$ and no other solutions in rang

$$f(x) = 3e^{2x} + 1 \quad \text{for } x \in \mathbb{R}$$

$$g(x) = x + 1 \qquad \text{for } x \in \mathbb{R}$$

(i) Write down the range of f and of g.

[2]

(ii) Evaluate $fg^2(0)$.

[2]

(iii) On the axes below, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, stating the coordinates of the points where the graphs meet the coordinate axes. [3]

(i)	f > 1	B1	Must be using correct notation
	$g \in \mathbb{R}$	B1	Must be using correct notation
(ii)	g(0)=1, g(1)=2 and attempt at $f(2)$	M1	For attempt at g ² and correct order
	f(2)=164.8 awrt 165	A1	
(iii)	***	В3	B1 for correct f and $(0,4)$, must be in first and second quadrant B1 for correct f^{-1} and $(4,0)$, must be in first and fourth quadrant B1 for $y = x$ and/or symmetry implied by 'matching intercepts'. No intersection.