WORK-ENERGY-POWER

1 Two workmen are employed on a building project, as shown in Fig. 5.1.

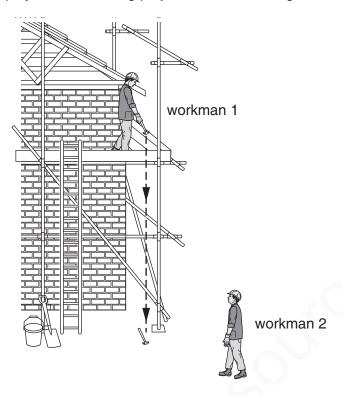


Fig. 5.1

- (a) Workman 1 drops a hammer, which falls to the ground. The hammer has a mass of 2.0 kg, and is dropped from a height of 4.8 m above the ground.
 - (i) Calculate the change in gravitational potential energy of the hammer when it is dropped.

	change in gravitational potential energy =[2]
(ii)	Describe the energy changes from the time the hammer leaves the hand of workman 1 until it is at rest on the ground.
	ro

(b)	Workman 2 picks up the hammer and takes it back up the ladder to workman 1.
He	climbs the first 3.0 m in 5.0 s. His total weight, including the hammer, is 520 N.
(i)	Calculate the useful power which his legs are producing.
	power =[2]
(ii)	In fact his body is only 12% efficient when climbing the ladder.
	Calculate the rate at which energy stored in his body is being used.
	rate =[1]
	[Total: 7]

(a) (i)	<i>mgh</i> in any form OR 2.0 × 10 × 4.8 96 J	C1 A1
(ii)	GPE → KE (+ heat and/or sound) → heat and/or sound −1 e.e.o.o.	B2
(b) (i)	force × distance/time OR 520 × 3/5 312 W	C1 A1
(ii)	2600 W ecf (i)	B1 [7]

2	(a)	State what is meant by the <i>centre of mass</i> of a body.
		[1]
	(b)	Fig. 4.1 shows an athlete successfully performing a high jump.
		Fig. 4.1
		The height of the bar above the ground is $2.0\mathrm{m}$. The maximum increase in gravitational potential energy (g.p.e.) of the athlete during the jump is calculated using the expression g.p.e. = mgh .
		Explain why the value of h used in the calculation is much less than 2.0 m.

(c) Fig. 4.2 shows, in order, five stages of an athlete successfully performing a pole-vault.

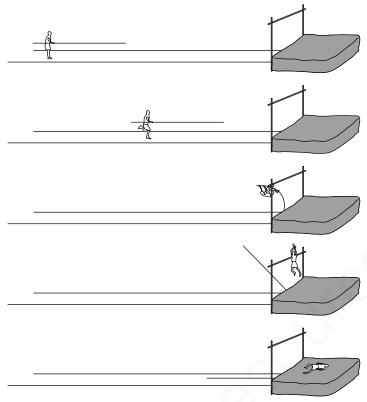


Fig. 4.2

Describe the energy changes which take place during the performance of the pole-vault, from the original stationary position of the pole-vaulter before the run-up, to the final stationary position after the vault.

[Total: 8]

(a)	(owtte)	acı	ы
(b)	h is the height through which the centre of mass/rises OR centre of mass/rises (much) less than 2.0 m		
	OR centre of mass/of athlete is above the ground level OR centre of mass/gravity passes under bar	B1	
	Allow centre of gravity in place of centre of mass		
(c	Standing: has chemical energy Run-up: kinetic energy gained Pole bent: has strain / elastic energy Rise: potential energy gained Fall: kinetic energy gained On mat: has thermal / heat / sound / strain / elastic energy	B1 B1 B1 B1 B1	[8]

Fig. 3.1 shows an aeroplane of mass 3.4×10^5 kg accelerating uniformly from rest along a runway.

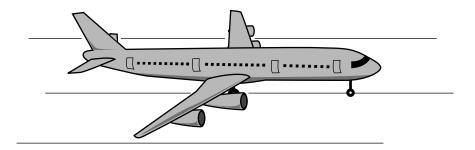


Fig. 3.1

After 26 s it reaches a speed of 65 m/s.

(a)	Calculate	
-----	-----------	--

constant speed.

1	(i)	the acceleration	of the aeroplane
((1)	the acceleration	of the aeroplane

		acceleration =	[2]
	(ii)	the resultant force on the aeroplane.	
		force =	[2]
(b)	Jus	at after taking off, the aeroplane continues to accelerate as it gains height.	
	(i)	State two forms of energy that increase during this time.	
		1	
		2	[2]
	(ii)	State one form of energy that decreases during this time.	
			[1]
	(iii)	State why the total energy of the aeroplane decreases during this time.	
			[1]

(c) When the aeroplane reaches its maximum height, it starts to follow a curved path at a

State the direction of the resultant force on the aeroplane.

(a) (i)	(a =) V/t or 65/26 2.5 m/s ² *Unit penalty applies)1 \1
(ii)	(F =)ma or $3.4 \times 10^5 \times 2.5$ 8.5×10^5 N *Unit penalty applies	ecf from 3(a)(i) ecf from 3(a)(i)		C1 \1
(b) (i)	any two of: KE or GPE or heat/internal en	ergy/thermal energy	E	32
(ii)	chemical energy not heat		E	31
(iii)	thermal energy/sound is lost (to the atmos	phere) or KE <u>of air</u>	E	31
(c) pe	rpendicular to path or towards centre of circle	or centripetal	B1	[9]
*Apply unit penalty once only				

4 (a)	Stat	e the energy changes that take place when
	(i)	a cyclist rides down a hill without pedalling,
	(ii)	a cyclist pedals up a hill at a constant speed.
		[3]
(b)	A c	ar of mass 940 kg is travelling at 16 m/s.
	(i)	Calculate the kinetic energy of the car.
		kinetic energy =[2]
	(ii)	The car is brought to rest by applying the brakes.
		The total mass of the brakes is 4.5 kg. The average specific heat capacity of the brake material is 520 J/(kg °C).
		Calculate the rise in temperature of the brakes. Assume there is no loss of thermal energy from the brakes.
		rise in temperature =[3]

[Total: 8]

(a)	(i)	(gravitational) potential energy to kinetic energy	B1
	(ii)	chemical energy to (gravitational) potential energy	B1
		reference in (i) or (ii) to heat/thermal/internal energy produced OR work done against air resistance or friction	B1
(b)	(i)	(K.E. =) $\frac{1}{2}mv^2$ OR $0.5 \times 940 \times 16^2$ 1.2×10^5 J	C1 A1
	(ii)	in words or symbols $Q = mc\theta$ OR $\theta = Q/mc$ 1.203 × 10 ⁵ = 4.5 × 520 × θ OR θ = 1.203 × 10 ⁵ / (4.5 × 520) 51 °C or K	C1 C1 A1
			[Total: 8]

5 Fig. 3.1 shows a fork-lift truck lifting a crate on to a high shelf in a warehouse.

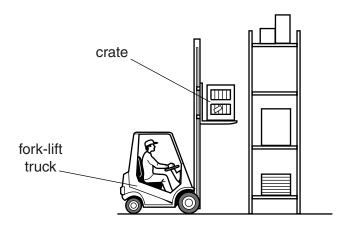


Fig. 3.1

The fork-lift truck lifts a crate of weight 640 N through a vertical distance of 3.5 m in 4.0 s.

(a) Calculate the useful work done in lifting the crate.

(b) A motor drives a mechanism to lift the crate. The current in the motor is 25 A. The motor is connected to a 75 V battery.

Calculate

(i) the energy supplied to the motor in 4.0 s,

(ii) the overall efficiency of the fork-lift truck in lifting the crate.

(c)	Not all of the energy supplied is used usefully in lifting the crate.
Sug	gest two mechanisms by which energy is wasted.
1	
2	[2]
	[Total: 8]

sound

(a)		D. =) $F \times d$ or 640 × 3.5 40 J to 2 or more sig. figs.	C1 A1	[2]
(b)	(i)	(<i>E</i> =) <i>VIt</i> or 75 × 25 × 4.0 or 75 × 100 (accept (<i>E</i> =) <i>VQ</i> and <i>Q</i> = <i>It</i>) 7500 J	C1 A1	[2]
	(ii)	(efficiency =) $\frac{\text{(useful)energy output}}{\text{energy input}}$ (× 100%) or 2240/7500		
		(accept power for energy) (e.c.f. from 3(a)(i) or 3(b)(i))	C1	
		0.3 or 0.30 or 0.299 or 30% or 29.9% (e.c.f. from 3(a)(i) or 3(b)(i))	A1	
(с	el fri	ny two from: ectrical heating ction		

B2

[Total: 8]

[2]

A diver climbs some steps on to a fixed platform above the surface of the water in a swimming-pool.

He dives into the pool. Fig. 2.1 shows the diver about to enter the water.

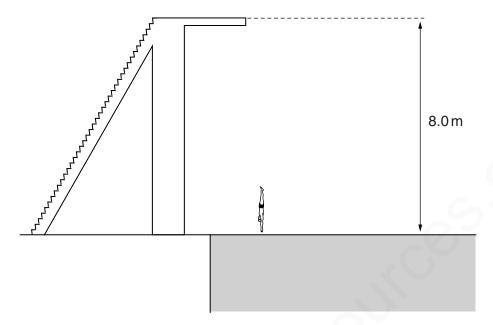


Fig. 2.1

The mass of the diver is 65 kg. The platform is 8.0 m above the surface of the water.

(a) Calculate

6

(i) the increase in the gravitational potential energy of the diver when he climbs up to the platform.

increase in gravitational potential energy =[1]

(ii) the speed with which the diver hits the surface of the water. Ignore any effects of air resistance.

speed =[4]

(b)	another dive from the same platform, the diver performs a somersault during the descent. e straightens, and again enters the water as shown in Fig. 2.1.		
	Discuss whether the speed of entry into the water is greater than, less than or equal to the speed calculated in (a)(ii) . Ignore any effects of air resistance.		
	[3]		
	[Total: 8]		

(a)	(i)	(increase in g.p.e. = $mgh \ \mathbf{OR} \ 65 \times 10 \times 8 =)\ 5200 \mathbf{J}$	B1
	(ii)	EITHER k.e. gained = g.p.e. lost $\frac{1}{2} mv^2 = 5200$ in any form $v^2 = 5200/(0.5 \times 65)$ OR 160 v = 12.6 m/s e.c.f. (a)(i) OR $v^2 = u^2 + 2as/v^2 = 2gh$ $v^2 = 2 \times 10 \times 8$ $v^2 = 160$ v = 12.6 m/s e.c.f. (a)(i)	C1 C1 C1 A1 (C1) (C1) (C1) (A1)
(b)	loss k.e. OR		B1 B1 B1
		celeration is the same tance fallen is the same	(B1) (B1)
			[Total: 8]