SMART EXAM RESOURCES 9702 PHYSICS TOPIC QUESTIONS

TOPIC: PHYSICAL QUANTITIES AND UNITS

SUB-TOPIC: SI UNITS

SUB-SUB-TOPIC: CONVERT BETWEEN UNITS

SET-3-QP-MS

1	(a)	Use an expression for work done, in terms of force, to show that the SI base units of energ
		are $ka m^2 s^{-2}$.

[2]

(b) (i) The energy E stored in an electrical component is given by

$$E = \frac{Q^2}{2C}$$

where Q is charge and C is a constant.

Use this equation and the information in (a) to determine the SI base units of C.

SI base units[2]

Mark Scheme:

(a)	(work =) force × displacement	C1
	units: $kg m s^{-2} \times m = kg m^2 s^{-2}$	A1
b)(i)	units of Q: As	C1
	units of C: kg ⁻¹ m ⁻² A ² s ⁴	A1

2	(a)	(i)		
				[1]
		(ii	Use the answer to (a)(i) to show that the SI base units of pressure are kg m ⁻¹ s ⁻² .	
				[1]
	(A horizontal pipe has length L and a circular cross-section of radius R . A liquid of densitions through the pipe. The mass m of liquid flowing through the pipe in time t is given by	
			$m = \frac{\pi(p_2 - p_1)R^4 \rho t}{8kL}$	
			where p_1 and p_2 are the pressures at the ends of the pipe and k is a constant.	
			Determine the SI base units of <i>k</i> .	

Mark Scheme:

(a)(i)	force / area (normal to the force)			
(a)(ii)	$(p = F/A \text{ so units are}) \text{ kg m s}^{-2}/\text{m}^2 = \text{kg m}^{-1} \text{ s}^{-2}$	A1		
(b)	unit of R : m and unit of t : s and unit of L : m	C 1		
	unit of ρ : kg m ⁻³	C1		
	$ \begin{array}{l} or \\ \rho = m / V \end{array} $			
	base units of k : (kg m ⁻¹ s ⁻² × m ⁴ × kg m ⁻³ × s) / (kg × m) = kg m ⁻¹ s ⁻¹	A1		

The drag force F_D acting on a sphere falling through a liquid is given by

$$F_{\rm D} = 6\pi \eta r v$$

where r is the radius of the sphere, v is the speed of the sphere in the liquid and η is a property of the liquid called the viscosity.

(a) Show that the SI base units of viscosity are $kg m^{-1} s^{-1}$.

Mark Scheme:

units of <i>F</i> : kg m s ⁻²	C1
units of r : m and units of v : m s ⁻¹	
units of η : kg m s ⁻² /(m × m s ⁻¹) = kg m ⁻¹ s ⁻¹	
	units of r : m and units of v : m s ⁻¹