DENSITY-MASS-VOLUME-QP-MS

(a) A list of metals is shown below.

		aluminium copper iron lead uranium
	Froi	m the list of metals choose one to match each description.
	Eac	h metal can be used once, more than once or not at all.
	(i)	It may be easily magnetised[1]
	(ii)	It is used as a fuel in nuclear power stations[1]
	(iii)	It is used in the core of a transformer. [1]
(b)	Cop	oper has a boiling point of 2562 °C.
	(i)	State the meaning of the term boiling point.
		[1]
	(ii)	When a liquid boils, energy is required but the temperature remains the same.
		Explain what is happening in terms of molecules.
		Use the term <i>latent heat</i> in your answer.
		[2]
(c)		sotope of copper has a nuclide notation $^{64}_{29}Cu$ and decays by the emission of β -particles roduce an isotope of zinc.
		the correct nuclide notation to write a symbol equation for this decay process.
	64) 11

[3]

(d)	A block of copper has a mass of 44.8 g and a volume of 5.0 cm ³ .
(i)	Calculate the density of the block of copper.
	State the formula you use and show your working.
	formula
	working
	density = g/cm ³ [2]
(ii)	State the weight of the block of copper.
	$(g = 10 \mathrm{N/kg})$
	N [1]
(iii)	The block of copper is resting on a desk. The area of the block in contact with the desk is $0.01\mathrm{m}^2$.
	Calculate the pressure exerted by the block on the desk.
	State the formula you use and show your working.
	formula
	working
	pressure = N/m ² [2]

MARKING SCHEME

(a)(i)	iron;	1
(a)(ii)	uranium ;	1
(a)(iii)	iron;	1
(b)(i)	temperature at which all of a liquid turns to a gas ;	1
(b)(ii)	latent heat of vapourisation; to break bonds / to overcome attractive forces; between the molecules / intermolecular bonds; to increase potential energy of the molecules;	max 2
(c)	$_{30}^{64}Zn$;; $_{-1}^{0}\beta$;	3
(d)(i)	density = mass / volume or 44.8 / 5.0 ; = 8.96 (g / cm ³) ;	2
(d)(ii)	0.448 (N);	1
(d)(iii)	pressure = force / area or 0.448 / 0.01 ; = 44.8 (N / m²) ;	2

2 (a) In a cartoon, a mouse is being chased by a cat.

The mouse accelerates constantly from rest for 1 second and reaches a speed of $3\,\text{m/s}$ and then moves at a constant speed of $3\,\text{m/s}$ for 8 seconds.

(i) On the grid in Fig. 6.1 draw the speed-time graph to show the motion of the mouse.

Fig. 6.1

[2]

(ii) The cat accelerates constantly from rest for 9 seconds and reaches a speed of 2 m/s.

Calculate the acceleration of the cat.

(b) Fig. 6.2 shows the mouse sitting on a cube of cheese, which is on a wooden beam pivoted in the middle.

Fig. 6.2

The cat sits on the other end of the beam and balances it.

The weight of the cat is 50 N and the combined weight of the mouse and cheese is 21 N.

Calculate the distance *d* when the beam is balanced.

distance $d = \dots$ cm [2]

(6)	Each side of the cube of cheese is 12cm.
	The weight of the cube of cheese is 20.5 N.
	Calculate the density of the cube of cheese in g/cm ³ .
	gravitational field strength = 10 N/kg
	density =g/cm ³ [4]
(d)	Water evaporates from the cat's bowl.
	Liquid water turns into water vapour when it evaporates. Water also turns into water vapour when water boils.
	State two differences between the processes of evaporation and boiling.
	1
	2
	[2]
	[Total: 12]

MARKING SCHEME:

(a)(i)	acceleration section; constant speed section;	2
(a)(ii)	acceleration = change in speed / time OR 2 / 9 ; = 0.2 (m / s ²) ;	2
(b)	$f_1d_1 = f_2d_2$ OR 50 \Box d = 21 \Box 20 ; d = 8.4 (cm) ;	2
(c)	volume = $1728 \text{ (cm}^3)/\text{use of } 12^3 \text{ ;}$ mass = $20.5/10 \text{ OR } 2.05 \text{ kg ;}$ $2.05 \square 1000 \text{ OR } 2050 \text{ g ;}$ (density =) 1.2 (g/cm ³);	4
(d)	evaporation can occur at any temperature / boiling only happens at the boiling point; evaporation happens at the surface / boiling occurs throughout the liquid; during boiling all / most molecules have enough energy to leave / evaporation lets only the molecules with most kinetic energy out; evaporation can occur using the internal energy of the system / boiling a(n external) source of heat; evaporation produces cooling / boiling does not produce cooling; evaporation is a slow process / boiling is a rapid process;	2
	max 2	

2		
_	١.	
	z	
	-11	,
ĸ	_	

(a) -	The volume of	the Sun is 1.4×10^{27}	m^3 .			
	The average	density of the Sun is	1410 kg/m³.			
	Calculate the	mass of the Sun.				
			mac	s =		kg [2]
			IIIas	5 –	<u></u>	kg [2]
(b)		he Sun transfers ene	rgy to the Earl	th mainly by ra	diation and no	by conduction
	or convection					
	•••••					
	•••••		•••••		•••••	[1]
(c)		nits γ-radiation and	visible light.	Both of these	radiations a	re part of the
	electromagne	•				
		adiation and visible lig n shown in Fig. 6.1.	in their corr	ect places in th	ie incomplete e	lectromagnetic
			0			
radio w	aves	infrared		ultraviolet		
						[1]
			Fig. 6.1			[.]
	(ii) State wh	y both these radiation	s take the sar	ne time to trav	el from the Sur	to the Earth.
						[1]

(d) Visible light from the Sun can be reflected, refrac	cted and diffracted.
Describe what happens to a wave when it is:	
reflected	
refracted	
diffracted.	
	[3]
	[Total: 8]

MARKING SCHEME

(a)	mass = density \times = 2.0 \times 10 ³⁰ (kg);	mass = density \times volume or 1410 \times 1.4 x 10 ²⁷ ; = 2.0 \times 10 ³⁰ (kg);				2
(b)	only radiation can	travel through a	vacuum / co	onduction and cor	vecti ın need a medium;	
(c)(i)					l d	
	radio waves	infrared	visible light	ultraviolet	γ-radiation	
	,	-	-			
(c)(ii)	both travel at sam	ne speed / 3×10^8	³ m/s;			
(d)	reflection involves a change in direction of waves when they travel back from a barrier; refraction of waves involves a change in the direction of waves as they pass from one medium to another; diffraction of waves involves a change in direction of waves as they pass through an opening or around a barrier in their path;					