SMART EXAM RESOURCES 9701 CAMBRIDGE AS CHEMISTRY **TOPIC QUESTIONS AND MARK SCHEMES** **TOPIC: ANALYTICAL TECHNIQUES** **SUB-TOPIC: Mass Spectrometry** 44.57 **SET-1-QP-MS** **Z** contains only alkene and carboxyl functional groups. (a) Complete Table 6.1 by describing the observations that occur when two different reagents are added to separate samples of **Z**(aq). Table 6.1 | reagent added
to Z (aq) | observation | |-------------------------------------|-------------| | Br ₂ (aq) | | | Na ₂ CO ₃ (s) | | [2] (b) Table 6.2 shows the percentage by mass of each element present in **Z**. Table 6.2 | element | percentage by mass/% | |----------|----------------------| | carbon | 41.38 | | hydrogen | 3.45 | | oxygen | 55.17 | Using the data in Table 6.2, demonstrate that the empirical formula of ${\bf Z}$ is CHO. Show your working. [1] (c) Fig. 6.1 shows the mass spectrum of Z. Fig. 6.1 (i) Deduce the molecular formula of **Z**. Explain your answer by referring to the molecular ion peak in Fig. 6.1 and the empirical formula of **Z**. [1] (ii) Use Fig. 6.1 to suggest the formulae of the fragments with m/e peaks at 45 and at 71. [2] (iii) Suggest the structure of **Z** using relevant information from Table 6.1, **(b)** and **(c)**. [1] | 3(a) | Br ₂ (aq) | orange to colourless OR orange disappears | | 2 | |----------|---|---|---|---| | | Na ₂ CO ₃ (s) | fizzing OR bubbles OR effervescence | | | | 3(b) | | H : O
45/1 55.17/16
.45 3.45 (so C ₍₁₎ H ₍₁₎ O ₍₁₎) | | 1 | | (c)(i) | Look for some in formula is C ₄ H ₄ 116 / 29 = 4 so | O_4 | on AND mass of $C_{(1)}H_{(1)}O_{(1)}$ = 29 to conclude molecular | 1 | | (c)(ii) | M1 m/e 45: ⁺ C
M2 m/e 71: C ₃ | OOH OR ⁺ CHO ₂
H ₃ O ₂ ⁺ | | 2 | | (c)(iii) | O _{OH} | OR OH HO | | 1 | | | | | | | Fig. 5.1 shows the mass spectrum of ketone **Z**, $C_5H_{10}O$. Fig. 5.1 Use the information in Fig. 5.1 to suggest the formulae of the fragments with m/e peaks at 29 and 57. Deduce the identity of Z. | <i>m</i> /e = 29 | |----------------------| | m/e = 57 | | identity of Z | | [3] | | [Total: 14] | | | | | | | | | | | | | ${\bf X}$ is a product of the substitution reaction that occurs when ${ m CHC} l{ m F}_2$ reacts with ${ m Br}_2$. There is only one naturally occurring isotope of fluorine, ¹⁹F. The mass spectrum of **X** shows molecular ion peaks at m/e = 164, 166 and 168. Complete Table 3.3 to show **all** the molecular ions responsible for each peak. Table 3.3 | m/e | formulae of molecular ions | |-----|--| | 164 | | | 166 | | | 168 | (CF ₂ ³⁷ C <i>l</i> ⁸¹ Br) ⁺ | | | | (a) But-2-ene reacts with KMnO₄ to form organic product, Y. Y does not react with Na₂CO₃. A gas is produced when an excess of Na is added to Y. - (i) Describe the conditions for the KMnO₄ used in the reaction to form Y from but-2-ene. [1] - (ii) 24.0 cm³ of gas is produced when an excess of Na is added to 0.001 mol of Y, when measured under room conditions. Assume that 1 mol of gas occupies 24.0 dm³ under room conditions. Deduce a possible structure of Y. Explain your answer. [3] **(b) Z** contains three types of atom: carbon, hydrogen and a halogen. The mass spectrum of **Z** is recorded. Fig. 5.1 shows a section of the mass spectrum at *m*/*e* greater than 63. The fragment at *m*/*e* = 64 is the molecular ion peak. Fig. 5.1 (i) Deduce the number of carbon atoms present in a molecule of Z using Fig. 5.1. Show your working.[1 | There are also peaks at $m/e = 29$ and $m/e = 49$. | |---| | Suggest the formulae of these fragments. Deduce the name of Z . | | m/e = 29 | | <i>m</i> / <i>e</i> = 49 | | name of Z | | | | | | | | (a)(ii) | cold + dilute | 1 | |----------|---|---| | (4)(11) | M1 unbranched 4C structure AND any number of –OH in any position | 3 | | | M2 0.001 mol H ₂ made from 0.001 mol Y AND | | | | R-OH + Na \rightarrow RONa + $1/2$ H ₂ OR use of 1 OH (group) $\rightarrow 1/2$ H ₂ | | | | M3 CH ₃ CH(OH)CH(OH)CH ₃ | | | (b)(i) | $100 \times 2.2 / 1.1 \times 100 = \underline{2}$ | 1 | | (b)(ii) | chlorine / Cl AND peak at M+2 represents the molecular ion with 37–Cl (rather than 35–Cl as relative abundance of (peaks) M: M+2 is 100:33 / 3:1) OR relative abundance of (peaks) M: M+2 is 100:33.3 / 3:1 (so peak at M+2 contains 37–Cl) | 1 | | (b)(iii) | $m/e = 29$: $C_2H_5^+$
$m/e = 49$: CH_2CI^+
name of Z: chloroethane | 3 | | | name of Z: chloroethane | | **5** Both functional groups in one molecule of **Y** react with an inorganic reagent to form one molecule of **Q** and one molecule of methanol, CH₃OH, as shown in Fig. 6.3. Fig. 6.3 (i) Part of the mass spectrum for \mathbf{Q} is shown in Fig. 6.4. Only peaks with m/e greater than 198 are shown. Fig. 6.4 Calculate the relative abundance, x, of the peak at m/e = 201. Show your working. (ii) **Q** contains **only** hydroxyl functional groups. Complete Table 6.1 to show the observations that occur when 2,4-dinitrophenylhydrazine (2,4-DNPH reagent) is added to separate samples of **Y** and **Q**. Table 6.1 | | observation on addition of 2,4-DNPH reagent | |---|---| | Υ | | | Q | | | (iii) | Under certain conditions, 0.0020mol of Q reacts with an excess of sodium to produce a total of 44.8cm^3 of gas at s.t.p. | |-------|---| | | Calculate the number of hydroxyl groups present in a molecule of Q . | Show your working. | | number of hydroxyl groups = [| 2 | |------|--|---------| | (iv) | Use Table 6.2 to describe and explain two differences between the infrared spectrum ${\bf Y}$ and ${\bf Q}$ in the region above $1500{\rm cm}^{-1}$. | ot | | | | | | | | <u></u> | Table 6.2 | bond | functional groups containing the bond | characteristic infrared absorption range (in wavenumbers)/cm ⁻¹ | |--------------------|---------------------------------------|--| | C-O hydroxy, ester | | 1040–1300 | | C=C | aromatic compound, alkene | 1500–1680 | | C=O | amide
carbonyl, carboxyl
ester | 1640–1690
1670–1740
1710–1750 | | C≡N | nitrile | 2200–2250 | | C–H | alkane | 2850–2950 | | N–H | amine, amide | 3300–3500 | | О–Н | carboxyl
hydroxy | 2500–3000
3200–3650 | ## **Mark Scheme:** | Y orange precipitate Q no precipitate Both correct for one mark OH + Na → RONa + 1 / 2H₂ .002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | Y orange precipitate Q no precipitate Both correct for one mark OH + Na → RONa + 1/2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups If Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | | observation on addition of 2,4–DNPH | | |--|--|--|---|--| | Q no precipitate Both correct for one mark ROH + Na → RONa + 1 / 2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | Q no precipitate Both correct for one mark ROH + Na → RONa + 1/2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | Υ | | | | Both correct for one mark ROH + Na → RONa + 1/2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ 12 uses data to show 2OH groups If Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) If Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | Both correct for one mark ROH + Na → RONa + 1/2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups M1 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ M2 uses data to show 2OH groups M1 Y will have absorption/peak/trough between 1670–1740 due to C=O (Q will not) M2 Q will have absorption/peak/trough between 3200–3600 due to O-H (Y will not) | À | | | | 2.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | ROH + Na → RONa + 1 / 2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups M1 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH : ½ mol H ₂ M2 uses data to show 2OH groups M1 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) M2 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | <u> </u> | no precipitate | Both correct for one mark | | 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | W12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not) | 0.002 mol Q prod
M1 answer indica | duced 0.002 mol H ₂ gas so) 2 OH groups ates that OH group(s) in \mathbf{Q} react with Na to p | roduce the H_2 in the ratio 1 mol OH : $1/2$ mol H_2 | | | A TON | M1 Y will have at | osorption / peak / trough between 1670–1740
osorption / peak / trough between 3200–3600 | due to C=O (Q will not)
due to O-H (Y will not) | | | | | | | - 6 Phosphoric(V) acid, H_3PO_4 , is used in both inorganic and organic reactions. - (d) H₃PO₄ also reacts with alcohols to form organophosphates. Organophosphates are compounds similar to esters. They have the general structure shown in Fig. 3.2. R = alkyl group Fig. 3.2 (ii) Compound **T** is a simple organophosphate. The mass spectrum of **T** shows a molecular ion peak at m/e = 182. This peak has a relative intensity of 12.7. The relative intensity of the M+1 peak is 0.84. Deduce the number of carbon atoms in **T**. Hence suggest the molecular formula of **T**. Assume that phosphorus and oxygen exist as single isotopes. Show your working. number of carbon atoms in T = molecular formula of T = [3] ## **Mark Scheme:** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ns = 6 | | | |---|---|--|--| | molecular formula | a = C ₆ H ₁₅ O ₄ P | | | | 4 | | | | | | | | | | | | | |