SMART EXAM RESOURCES 9701 CAMBRIDGE AS CHEMISTRY **TOPIC QUESTIONS AND MARK SCHEMES**

TOPIC: ANALYTICAL TECHNIQUES

SUB-TOPIC: Mass Spectrometry 44.57

SET-1-QP-MS

Z contains only alkene and carboxyl functional groups.

(a) Complete Table 6.1 by describing the observations that occur when two different reagents are added to separate samples of **Z**(aq).

Table 6.1

reagent added to Z (aq)	observation
Br ₂ (aq)	
Na ₂ CO ₃ (s)	

[2]

(b) Table 6.2 shows the percentage by mass of each element present in **Z**.

Table 6.2

element	percentage by mass/%
carbon	41.38
hydrogen	3.45
oxygen	55.17

Using the data in Table 6.2, demonstrate that the empirical formula of ${\bf Z}$ is CHO. Show your working.

[1]

(c) Fig. 6.1 shows the mass spectrum of Z.

Fig. 6.1

(i) Deduce the molecular formula of **Z**. Explain your answer by referring to the molecular ion peak in Fig. 6.1 and the empirical formula of **Z**.

[1]

(ii) Use Fig. 6.1 to suggest the formulae of the fragments with m/e peaks at 45 and at 71.

[2]

(iii) Suggest the structure of **Z** using relevant information from Table 6.1, **(b)** and **(c)**.

[1]

3(a)	Br ₂ (aq)	orange to colourless OR orange disappears		2
	Na ₂ CO ₃ (s)	fizzing OR bubbles OR effervescence		
3(b)		H : O 45/1 55.17/16 .45 3.45 (so C ₍₁₎ H ₍₁₎ O ₍₁₎)		1
(c)(i)	Look for some in formula is C ₄ H ₄ 116 / 29 = 4 so	O_4	on AND mass of $C_{(1)}H_{(1)}O_{(1)}$ = 29 to conclude molecular	1
(c)(ii)	M1 m/e 45: ⁺ C M2 m/e 71: C ₃	OOH OR ⁺ CHO ₂ H ₃ O ₂ ⁺		2
(c)(iii)	O _{OH}	OR OH HO		1

Fig. 5.1 shows the mass spectrum of ketone **Z**, $C_5H_{10}O$.

Fig. 5.1

Use the information in Fig. 5.1 to suggest the formulae of the fragments with m/e peaks at 29 and 57. Deduce the identity of Z.

<i>m</i> /e = 29
m/e = 57
identity of Z
[3]
[Total: 14]

 ${\bf X}$ is a product of the substitution reaction that occurs when ${
m CHC} l{
m F}_2$ reacts with ${
m Br}_2$.

There is only one naturally occurring isotope of fluorine, ¹⁹F.

The mass spectrum of **X** shows molecular ion peaks at m/e = 164, 166 and 168.

Complete Table 3.3 to show **all** the molecular ions responsible for each peak.

Table 3.3

m/e	formulae of molecular ions
164	
166	
168	(CF ₂ ³⁷ C <i>l</i> ⁸¹ Br) ⁺

(a) But-2-ene reacts with KMnO₄ to form organic product, Y.

Y does not react with Na₂CO₃.

A gas is produced when an excess of Na is added to Y.

- (i) Describe the conditions for the KMnO₄ used in the reaction to form Y from but-2-ene.
 [1]
- (ii) 24.0 cm³ of gas is produced when an excess of Na is added to 0.001 mol of Y, when measured under room conditions.
 Assume that 1 mol of gas occupies 24.0 dm³ under room conditions.

Deduce a possible structure of Y. Explain your answer.

[3]

(b) Z contains three types of atom: carbon, hydrogen and a halogen. The mass spectrum of **Z** is recorded. Fig. 5.1 shows a section of the mass spectrum at *m*/*e* greater than 63. The fragment at *m*/*e* = 64 is the molecular ion peak.

Fig. 5.1

(i) Deduce the number of carbon atoms present in a molecule of Z using Fig. 5.1. Show your working.

.....[1

There are also peaks at $m/e = 29$ and $m/e = 49$.
Suggest the formulae of these fragments. Deduce the name of Z .
m/e = 29
<i>m</i> / <i>e</i> = 49
name of Z

(a)(ii)	cold + dilute	1
(4)(11)	M1 unbranched 4C structure AND any number of –OH in any position	3
	M2 0.001 mol H ₂ made from 0.001 mol Y AND	
	R-OH + Na \rightarrow RONa + $1/2$ H ₂ OR use of 1 OH (group) $\rightarrow 1/2$ H ₂	
	M3 CH ₃ CH(OH)CH(OH)CH ₃	
(b)(i)	$100 \times 2.2 / 1.1 \times 100 = \underline{2}$	1
(b)(ii)	chlorine / Cl AND peak at M+2 represents the molecular ion with 37–Cl (rather than 35–Cl as relative abundance of (peaks) M: M+2 is 100:33 / 3:1) OR relative abundance of (peaks) M: M+2 is 100:33.3 / 3:1 (so peak at M+2 contains 37–Cl)	1
(b)(iii)	$m/e = 29$: $C_2H_5^+$ $m/e = 49$: CH_2CI^+ name of Z: chloroethane	3
	name of Z: chloroethane	

5 Both functional groups in one molecule of **Y** react with an inorganic reagent to form one molecule of **Q** and one molecule of methanol, CH₃OH, as shown in Fig. 6.3.

Fig. 6.3

(i) Part of the mass spectrum for \mathbf{Q} is shown in Fig. 6.4. Only peaks with m/e greater than 198 are shown.

Fig. 6.4

Calculate the relative abundance, x, of the peak at m/e = 201.

Show your working.

(ii) **Q** contains **only** hydroxyl functional groups.

Complete Table 6.1 to show the observations that occur when 2,4-dinitrophenylhydrazine (2,4-DNPH reagent) is added to separate samples of **Y** and **Q**.

Table 6.1

	observation on addition of 2,4-DNPH reagent
Υ	
Q	

(iii)	Under certain conditions, 0.0020mol of Q reacts with an excess of sodium to produce a total of 44.8cm^3 of gas at s.t.p.
	Calculate the number of hydroxyl groups present in a molecule of Q .

Show your working.

	number of hydroxyl groups = [2
(iv)	Use Table 6.2 to describe and explain two differences between the infrared spectrum ${\bf Y}$ and ${\bf Q}$ in the region above $1500{\rm cm}^{-1}$.	ot
		<u></u>

Table 6.2

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O hydroxy, ester		1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
О–Н	carboxyl hydroxy	2500–3000 3200–3650

Mark Scheme:

Y orange precipitate Q no precipitate Both correct for one mark OH + Na → RONa + 1 / 2H₂ .002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	Y orange precipitate Q no precipitate Both correct for one mark OH + Na → RONa + 1/2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups If Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)		observation on addition of 2,4–DNPH	
Q no precipitate Both correct for one mark ROH + Na → RONa + 1 / 2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	Q no precipitate Both correct for one mark ROH + Na → RONa + 1/2H₂ 0.002 mol Q produced 0.002 mol H₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H₂ in the ratio 1 mol OH : ½ mol H₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	Υ		
Both correct for one mark ROH + Na → RONa + 1/2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups If answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ 12 uses data to show 2OH groups If Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) If Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	Both correct for one mark ROH + Na → RONa + 1/2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups M1 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ M2 uses data to show 2OH groups M1 Y will have absorption/peak/trough between 1670–1740 due to C=O (Q will not) M2 Q will have absorption/peak/trough between 3200–3600 due to O-H (Y will not)	À		
2.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups 11 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH: ½ mol H ₂ 12 uses data to show 2OH groups 11 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) 12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	ROH + Na → RONa + 1 / 2H ₂ 0.002 mol Q produced 0.002 mol H ₂ gas so) 2 OH groups M1 answer indicates that OH group(s) in Q react with Na to produce the H ₂ in the ratio 1 mol OH : ½ mol H ₂ M2 uses data to show 2OH groups M1 Y will have absorption / peak / trough between 1670–1740 due to C=O (Q will not) M2 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	<u> </u>	no precipitate	Both correct for one mark
12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	W12 Q will have absorption / peak / trough between 3200–3600 due to O-H (Y will not)	0.002 mol Q prod M1 answer indica	duced 0.002 mol H ₂ gas so) 2 OH groups ates that OH group(s) in \mathbf{Q} react with Na to p	roduce the H_2 in the ratio 1 mol OH : $1/2$ mol H_2
	A TON	M1 Y will have at	osorption / peak / trough between 1670–1740 osorption / peak / trough between 3200–3600	due to C=O (Q will not) due to O-H (Y will not)

- 6 Phosphoric(V) acid, H_3PO_4 , is used in both inorganic and organic reactions.
 - (d) H₃PO₄ also reacts with alcohols to form organophosphates.

Organophosphates are compounds similar to esters. They have the general structure shown in Fig. 3.2.

R = alkyl group

Fig. 3.2

(ii) Compound **T** is a simple organophosphate.

The mass spectrum of **T** shows a molecular ion peak at m/e = 182. This peak has a relative intensity of 12.7.

The relative intensity of the M+1 peak is 0.84.

Deduce the number of carbon atoms in **T**. Hence suggest the molecular formula of **T**.

Assume that phosphorus and oxygen exist as single isotopes.

Show your working.

number of carbon atoms in T =
molecular formula of T =

[3]

Mark Scheme:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ns = 6		
molecular formula	a = C ₆ H ₁₅ O ₄ P		
4			