SPEED-TIME-FALLING OBJECTS

- 1 (a) A stone falls from the top of a building and hits the ground at a speed of 32 m/s. The air resistance-force on the stone is very small and may be neglected.
 - (i) Calculate the time of fall.

time =

(ii) On Fig. 1.1, draw the speed-time graph for the falling stone.

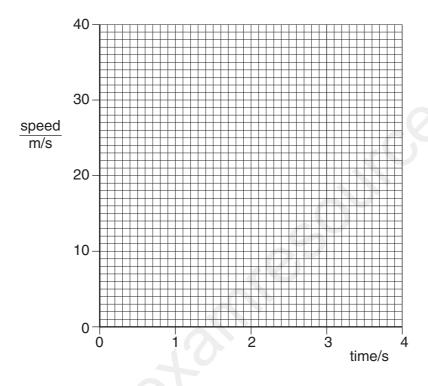


Fig. 1.1

(iii) The weight of the stone is 24 N. Calculate the mass of the stone.

mass =	
	[5]

(b) A student used a suitable measuring cylinder and a spring balance to find the den a sample of the stone.		
	(i)	Describe how the measuring cylinder is used, and state the readings that are taken.
	(ii)	Describe how the spring balance is used, and state the reading that is taken.
	(iii)	Write down an equation from which the density of the stone is calculated.
((iv)	The student then wishes to find the density of cork. Suggest how the apparatus and the method would need to be changed.
		[6]

------Marking Scheme-----

(a)	(i)	t = v/g or 32/10 = 3.2 s	C1 A1	
	(ii)	straight line starting at zero, inclined line joining 0,0 and 3.2, 32, accept c.f. from time (i)	C1 A1	
	(iii)	2.4 kg	A1	[5]
(b)	(i)	take volume of water before use (totally) immerse stone and take new volume (Not clearly measured before and after C1)	B1 B1	
	(ii)	hang rock from balance and take reading	B1	
	(iii)	density = mass/volume	В1	
	(iv)	need to tie "sinker" or cork or press cork down	В1	
		need volume with sinker then volume with sinker and cork or just completely submerge cork	В1	[6]
			[Tota	al: 111

2 Fig. 1.1 shows the path of one drop of water in the jet from a powerful hose.

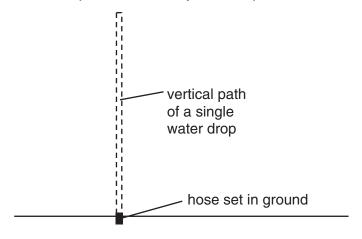


Fig. 1.1

Fig. 1.2 is a graph of speed against time for the water drop shown in Fig. 1.1.

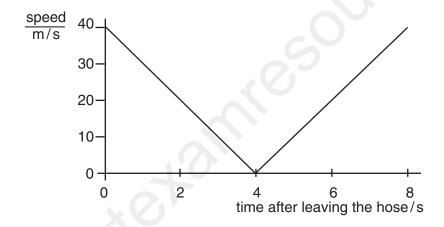


Fig. 1.2

(a) Describe the movement of the water drop in the first 4s after leaving the	hose.
---	-------

(b) Use Fig. 1.2 to find
(i) the speed of the water leaving the hose,
speed =
(ii) the time when the speed of the water is least.
time =[2]
(c) Use values from Fig. 1.2 to calculate the acceleration of the drop as it falls back towards the ground. Show your working.
acceleration =[3]
(d) Calculate the greatest distance above the ground reached by the drop.
distance =[3]

deceleration/slows down/speed reduces (a) deceleration uniform/comes to rest at 4 s 1 2 (b) (i) 40 (m/s) 2 (ii) 4 (s) (c) speed falls from 0 to 40 m/s in 4 s acceleration = change in speed/time taken or 40(m/s)/4(s) acceleration = 10 m/s^2 1 distance = average speed x time or area of triangle under (d) graph $= 20 \times 4 \text{ or } 2 \times 40$ = 80 m

(10)

Fig. 1.1 shows the axes for a speed-time graph.

3

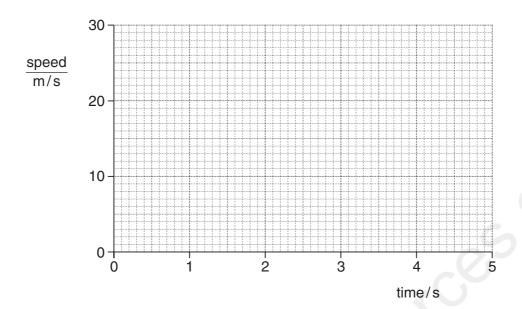


Fig. 1.1

(a) An object A falls freely from rest with the acceleration due to gravity $(g = 10 \text{ m/s}^2)$. It is not affected by air resistance.

(b) Using your graph, or an alternative method, calculate the distance fallen in the first 2s by object A in part (a).

(c) A second object B falls through the air from rest, but is affected by air resistance. It reaches a terminal velocity of 14 m/s.

On Fig. 1.1, draw a possible graph for object B, including the region where it is travelling at terminal velocity. [1]

7

[1]

	(d)	(i) Suggest a possible differ a terminal velocity.	ence between objects A and B that could lead to B reaching
			[1]
	(ii)	Explain, in terms of the force	s on B, why B reaches a terminal velocity.
			[2]
(e)	Obj	ect A experiences a gravitation	nal force of 2.0 N.
	(i)	State the value of the weight	of A.
			weight = [1]
	(ii)	Calculate the mass of A.	
			mass = [1]
(f)	Obj	ect A is floating in equilibrium	on a liquid.
	Stat	te the value of the upward forc	e of the liquid on A.
			upward force = [1]
			[Total: 10]

Marking Scheme		
straight line through origin and reaching (or would reach) 30m/s after 3s	B1	
	C1 A1	
line, all below first line and horizontal at 14m/s (±½ small square) NOTE: "knee" of line need not be curved	B1	
(i) any intelligent attempt e.g. effect of air resistance, B larger area than A, B smaller mass/weight than A	B1	
(ii) (eventually) upward force on B = downward force or equivalent. no more acceleration or constant speed NOT terminal velocity	B1 B1	
(i) 2.0 N or 2 N	B1	
(ii) 0.2 kg or 200 g	В1	
	B1	[10
	straight line through origin and reaching (or would reach) 30m/s after 3s average speed × time or area under graph or s = ut + ½at² or ½b × h 20 m c.a.o. line, all below first line and horizontal at 14m/s (±½ small square) NOTE: "knee" of line need not be curved (i) any intelligent attempt e.g. effect of air resistance, B larger area than A, B smaller mass/weight than A (ii) (eventually) upward force on B = downward force or equivalent. no more acceleration or constant speed NOT terminal velocity (i) 2.0 N or 2 N (ii) 0.2 kg or 200 g 2 N or 2.0 N or candidate's (e)(i)	average speed × time or area under graph or s = ut + ½at² or ½b × h 20 m c.a.o. C1 A1 line, all below first line and horizontal at 14m/s (±½ small square) NOTE: "knee" of line need not be curved (i) any intelligent attempt e.g. effect of air resistance, B larger area than A, B smaller mass/weight than A B1 (ii) (eventually) upward force on B = downward force or equivalent. no more acceleration or constant speed NOT terminal velocity B1 (ii) 2.0 N or 2 N B1 (iii) 0.2 kg or 200 g B1

[10]