SMART EXAM RESOURCES

SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4

TOPIC: MOTION SUB-TOPIC: MOMENT OF A FORCE SET 3 QP-MS

Fig. 3.1 shows a simple turbine, similar to those used in a nuclear power station.

Fig. 3.1

(i) The high-pressure steam is at a pressure of $1.8 \times 10^7 \, \text{Pa}$.

Blade **A** has a surface area of $0.12 \,\mathrm{m}^2$.

Show that the force acting on blade **A** is $2.2 \times 10^6 \, \text{N}$.

(ii) The moment of the force, from the high-pressure steam acting on blade $\bf A$, is $1.35 \times 10^6 \, N \, \rm M$ Calculate the distance d, from the centre of blade $\bf A$ to the pivot of the turbine.

distance *d* = m [2]

MARK SCHEME:

)(i)	$1.8 \times 10^7 \times 0.12$;	
(ii)	$(d =) m + f/(d =) 1.35 \times 10^6 + 2.2 \times 10^6 ;$ (d =) 0.61 or 0.63 (m);	
	$(\sigma =) 0.61 \text{ or } 0.63 \text{ (m)};$	

2 Fig. 9.1 shows a simple d.c. motor with a coil of wire containing 100 turns.

Fig. 9.1

- (a) The current in the coil causes forces to act on the coil, which make it turn about its axis.
 - (i) Fig. 9.1 shows a force of 1.2 N acting at 90° to the coil, at a distance of 3.5 cm from the axis.

Calculate the moment of the force on the coil.

moment = Nm [3]

MARK SCHEME:

(a)(i)	(3.5 cm =) 0.035 (m);	3
()()	$(moment =) f \times d / 1.2 \times 0.035$;	
	(moment =) 0.042 (N m);	
	or	
	(35 cm =) 0.35 (m);	
	$(moment =) f \times d/1.2 \times 0.35;$ (moment =) 0.42 (N m);	
	(moment –) 0.42 (N m),	