SMART EXAM RESOURCES SUBJECT:COORDINATED SCIENCES [PHYSICS] PAPER 4
 TOPIC: MOTION SUB-TOPIC: MOMENT OF A FORCE SET 3 QP-MS

1 Fig. 3.1 shows a simple turbine, similar to those used in a nuclear power station.

Fig. 3.1
(i) The high-pressure steam is at a pressure of $1.8 \times 10^{7} \mathrm{~Pa}$.

Blade \mathbf{A} has a surface area of $0.12 \mathrm{~m}^{2}$.
Show that the force acting on blade \mathbf{A} is $2.2 \times 10^{6} \mathrm{~N}$.
(ii) The moment of the force, from the high-pressure steam acting on blade \mathbf{A}, is $1.35 \times 10^{6} \mathrm{~N}[$ 6] $]$ Calculate the distance d, from the centre of blade \mathbf{A} to the pivot of the turbine.

(i)	$1.8 \times 10^{7} \times 0.12 ;$	$\mathbf{1}$
(ii)	$(d=) m \div f /(d=) 1.35 \times 10^{6} \div 2.2 \times 10^{6} ;$ $(d=) 0.61$ or $0.63(\mathrm{~m}) ;$	$\mathbf{2}$

Fig. 9.1 shows a simple d.c. motor with a coil of wire containing 100 turns.

Fig. 9.1
(a) The current in the coil causes forces to act on the coil, which make it turn about its axis.
(i) Fig. 9.1 shows a force of 1.2 N acting at 90° to the coil, at a distance of 3.5 cm from the axis.

Calculate the moment of the force on the coil.

(a)(i)	$(3.5 \mathrm{~cm}=) 0.035(\mathrm{~m}) ;$	
	(moment $=) f \times d / 1.2 \times 0.035 ;$	
	(moment $=) 0.042(\mathrm{Nm}) ;$	
or	$(35 \mathrm{~cm}=) 0.35(\mathrm{~m}) ;$	
	(moment $=) f \times d / 1.2 \times 0.35 ;$	
(moment $=) 0.42(\mathrm{Nm}) ;$		

